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ABSTRACT 

Tuberculosis is a major cause of death worldwide and is especially prevalent in 

developing countries. It is known that the response to pharmacologic treatments can be 

influenced by several factors, including genetics, the focus of pharmacogenetics, and 

ethnicity. We conducted a review of the literature encompassing genes of 

pharmacogenetic interest to evaluate the data currently available in reference to treatment 

response alterations, allele frequencies, and interethnic differences. Through our 

statistical analyses, we were able to point out potential protective and risk variants for 

several ethnicities, especially for NAT2 gene, indicating future paths to be pursued by 

further initiatives for a future of safer and more effective tuberculosis treatments. 
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RESUMO 

A tuberculose é uma das principais causas de morte no mundo e é particularmente 

prevalente em países em desenvolvimento. Sabe-se que a resposta a tratamentos 

farmacológicos pode ser influenciada por vários fatores, como genética, o foco da 

farmacogenética, e etnia. Conduzimos essa revisão de literatura englobando genes de 

interesse farmacogenético para avaliar os dados atualmente disponíveis no que diz 

respeito a alterações na resposta a tratamentos, frequências alélicas e diferenças 

interétnicas. Por meio de nossas análises estatísticas, conseguimos apontar variantes 

potencialmente protetoras e de risco para várias etnias, especialmente para o gene NAT2, 

indicando caminhos futuros a serem seguidos por iniciativas subsequentes de modo a 

buscar um futuro de tratamentos contra tuberculose mais seguros e eficazes. 

PALAVRAS-CHAVE: Tuberculose, Farmacogenética, Drogas Anti-TB. 

 

INTRODUCTION 

 

Tuberculosis, a disease long known to men, with evidence indicating its presence 

in ancient civilizations such as Egypt more than 5000 years ago, still haunts humanity 

nowadays1, especially in developing countries populations given that the World Health 

Organization (WHO) states that most patients with tuberculosis are from these nations2. 
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According to Global Tuberculosis Report of 2022, provided by WHO, this disease was 

the leading cause of death from a single infectious agent until the COVID-19 pandemic, 

estimating that one quarter of the global population have already been infected3. Caused 

by Mycobacterium tuberculosis and transmitted almost exclusively by aerosol expelled 

from an infected individual, this malady causes necrotizing granulomatous inflammation, 

with most cases affecting the lungs but extrapulmonary sites can be found4. 

Although new drugs are being researched and introduced, such as bedaquiline and 

delamanid, tuberculosis treatment still consists mainly of four drugs: isoniazid (INH), 

rifampicin (RMP), pyrazinamide (PZA) and ethambutol (EMB)5. Anti-tuberculosis (anti-

TB) treatment duration in general consists of the four aforementioned drugs for 2 months, 

followed by INH associated with RMP for additional 4 months, and because of its 

lengthiness, chances of hepatotoxicity and side effects causes significant low adherence 

of patients6. Pharmacogenetics (PGx) studies the correlation between drug response and 

the individual genetic information, aiming to maximize drug efficacy while minimizing 

the risk of adverse reactions, resulting in a personalized medicine raising the odds for a 

better individual outcome7. But, since the clinical implementation of PGx is still an 

ongoing process, especially in neglected diseases, more evidence is needed to support 

relevant information that will have its importance in the patient treatment8. Although 

individual genotyping is considered the ideal, since allele frequencies vary amongst 

different populations, an interesting approach for investigating the possible correlations 

between drug metabolism and genetic polymorphism is at an ethnicity level9. 

 Clinical Pharmacogenetics Implementation Consortium10 and The Dutch 

Pharmacogenetics Working Group11 are international consortia of researchers whose goal 

is to guide the implementation of pharmacogenetics, and no guidelines referring to 

tuberculosis treatment are available until this moment. So, gathering information about 

PGx of tuberculosis treatment is a literature gap that needs to be filled. 

 The aim of this review is to gather and summarize information about the possible 

genes and their variants that have associations with the four main anti-TB drugs12. For a 

more meticulous approach, variants frequencies were also analyzed through an ethnical 

perspective. 
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METHODS 

 

Firstly, PharmGKB database was searched regarding anti-tuberculosis drugs: 

isoniazid, rifampicin, pyrazinamide and ethambutol, retrieving candidate genes that could 

somehow interfere with its metabolism/transport/response, resulting in the following 14 

genes: NAT2, AGBL4, ABCB1, ABCC2, CUX2, GSTP1, NOS2, RIPOR2/FAM65B, 

SLCO1B1, TNF, XPO1, CYP2B6, CYP2C19 and CYP2E1. Afterwards, PubMed® 

database was searched using the terms: “<Gene name> + polymorphism + Tuberculosis”. 

No filters were applied, and studies published until February of 2022 were considered. 

Inclusion criteria were: (1) studies comprising only human subjects; (2) articles 

considering anti-tuberculosis drug response; (3) articles presenting the frequency of any 

variant of the selected genes. Exclusion criteria were: (1) studies comprising animal 

models; (2) literature reviews; (3) studies that did not meet the inclusion criteria. 

Ethnical groups were divided into 9 large groups: Northern Africans, Sub-Saharan 

Africans, Europeans, East Asians, South Asians, Southeast Asians, Middle Easterns, 

Admixed and Non-informed. This division was made considering genetic differences 

amongst populations belonging to the same continent, such as Asia and Africa13. 

Allele frequencies were calculated by a weighted average, and a chi-squared (χ2) 

test with correction of Yates was applied to verify frequency differences between cases 

and controls. All statistic tests were performed in R® language14 with in-house scripts. 

Variants nomenclatures were standardized according to PharmVar15 and NCBI-dbSNP16 

to avoid ambiguity. 

 

RESULTS AND DISCUSSIONS 

 

During Pubmed search, 466 articles were found, and after all screenings, 83 

articles were included for data collection, as Figure 1. Data from the final 83 studies are 

summarized in Table 1, regarding gene and number of individuals, grouped by ethnic 

group, resulting in a total of 23,291 individuals. 

 

Figure 1. Review flow diagram - Identification of studies via databases and registers. 
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Ethnic representation, in a pharmacogenetics context, has a considerable 

importance because the frequency of notable polymorphisms varies among populations17. 

Thus, to analyze and comprehend this subject is important to translate research findings 

into clinical practice. In a continental perspective, Asia was the most represented in 

number of individuals and encompassed all genes proposed. In contrast to the number of 
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studies regarding pharmacogenetics, Europe had a low number of individuals analyzed, 

only 202 which represents 0.87% overall, when a higher representation was to be 

expected18. However, those numbers are coherent with the tuberculosis incidence rate 

reported by the WHO in their “Global Tuberculosis Report 2022”, indicating that Asia is 

a high incidence continent, while Europe rates are low. 

Allele frequencies were statistically compared between cases and controls when 

a satisfactory number of individuals was presented, and the allele/genotype frequency 

values were available. As RIPOR2/FAM65B, TNF, SLCO1B1, ABCB1, XPO1, CYP2E1, 

CYP2B6, AGBL4 and CUX2 genes presented no significant differences, their results are 

available in Table S1. 

The significant results along with the discussions of ABCC2, CYP2C19/CYP2C9, 

GSTP1, NOS2 and NAT2 genes are presented below: 

         ABCC2 

         ATP Binding Cassete Subfamily C Member 2, also known as ABCC2, cMOAT or 

MRP2, is a member of the subfamily of ABCC genes, alongside other 12 members, which 

encode an active cellular membrane transporter of the same name19. Due to its expression 

in the apical membrane of various polarized cells, such as hepatocytes, kidney proximal 

tubules cells and epithelium cells of the intestines, ABCC2 protein is responsible for 

controlling efflux of various substrates, especially conjugated endogenous substances and 

xenobiotics in the final phases of detoxification20. Mutations in the ABCC2 gene can lead 

to a rare hereditary disease called Dubin-Johnson syndrome, which is expressed by a 

hindered capability to eliminate conjugated bilirubin21. Due to these characteristics, 

especially for being an efflux pump, added to the fact that anti tuberculosis drugs can lead 

to adverse side effects when accumulated in the organism, ABCC2 might be a candidate 

for further investigation22,23. 

 Due to high incidence rates of anti-TB induced hepatotoxicity, reaching numbers 

higher than 10%, Bai et al. investigated the possible correlation between ABCC genes and 

hepatotoxicity due to anti-TB treatment in the Western region of China24. 746 patients 

met the inclusion criteria, with 118 of them manifesting symptoms coherent with anti-TB 

induced hepatotoxicity. Thirty-nine single nucleotide variants were analyzed, distributed 

amongst the 13 ABCC genes. After Bonferroni correction, ABCC2 rs3740065 was the 

only variant with a significant p-value of 0.049 (95% CI) and Odds Ratio of 0.6 for the 

minor allele (G), thus relating to a protective factor against anti-TB induced 

hepatotoxicity. Also, the GG and GA genotypes were related to a decreased risk of anti-
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TB drug induced hepatotoxicity, in a dominant model (OR, 0.46; 95%CI, 0.31-0.69; 

p=0.005 after Bonferroni correction). The authors discussed their efforts in isolating 

genotyping from other variables, such as age, sex or linkage disequilibrium with other 

genes known to have impacts on anti-TB drugs efficiency. 

         CYP2C19/CYP2C9 haplotype 

         Cytochrome P450 (CYP) enzymes have many substrates, and regarding drug 

metabolism, they are related to oxidation and reduction reactions25, aiming to detoxify 

the organism. CYP enzymes are codified by homonymous genes, which are known to be 

very polymorphic15. Among them, CYP2C19 and CYP2C9 are two of the most variable 

and studied genes, and their variants are associated with drug response of many classes 

of treatments12. 

 A study conducted by Kim and collaborators in South Korea enrolled 221 patients 

diagnosed with pulmonary and/or pleuritis tuberculosis that underwent first line anti-TB 

drugs (isoniazid, rifampicin, ethambutol and pyrazinamide) from seven university 

hospitals, and analyzed the possible correlation between anti-TB drugs induced 

maculopapular eruption (MPE) and polymorphisms in genes of interest, including 

CYP2C19 and CYP2C926. CYP2C9 -1565 C>T (p=0.022, OR=0.23) and CYP2C19 

W212X (*3) (p=0.042, OR=0.270) had a significant p-value at 95% level of confidence, 

and both showed a protective factor for the minor allele. As the authors presented the 

genotype frequencies together for both SNPs (e.g. GG and GA+AA), we were not able to 

recalculate allele frequency to insert on our table. Furthering their investigation, the 

authors took notice that the CYP2C19 and CYP2C9 are locally near in the chromosome 

10q24 and there is a significant linkage disequilibrium between them, so a haplotype 

analysis was conducted, revealing that the haplotype (CYP2C19 −1418 C>T_W212X 

CYP2C9 -1565 C>T_−1188 C > T - [h3-TATC]) was also protective for anti-TB drugs 

induced MPE. 

         GSTP1 

         Glutathione S-transferase (GST) genes have a major role in phase II drug 

metabolism, including in anti-tuberculosis drugs27. GSTP1 polymorphism has been 

correlated with an 8-fold higher risk of liver disease28. Due to the hepatotoxicity aspect 

of anti-tuberculosis drugs, GSTP1 polymorphisms may influence the side effects in those 

treatments. 

 Investigating this possibility, Wu and collaborators made, at first, a prospective 

study contemplating 287 Han Chinese TB patients, all had completed a 3-month first line 
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anti-TB treatment (a combination of isoniazid, rifampicin, pyrazinamide and ethambutol). 

Among those, 30 patients developed anti-TB drug-induced hepatotoxicity (ATDH)27. 

Genotyping of GSTP1 was conducted considering two variants and, at first, a correlation 

was found for both of them: rs1695.A (OR=3.876, 95%CI: 1.258–11.91; p=0.018) and 

rs4147581 GG genotype (OR=2.578, 95% CI: 1.076–6.173; p=0.034) in comparison to 

CC or CG. But, after analyzing the linkage disequilibrium (LD) between the two variants, 

the authors concluded that the correlation of rs4147581 variant was likely due to the LD 

with rs1695. Aiming to verify those conclusions, Wu’s group made an independent 

retrospective study of 115 cases and 116 controls, following the same inclusion and 

exclusion criteria for the prospective study and also analyzed GSTP1 variants, reaching 

the conclusion, and further supporting their initials findings, that rs1695.A was associated 

with a higher risk of developing ATDH (OR=2.10, 95%CI: 1.17–3.76; p=0.012). In both 

prospective and retrospective studies, rs1695 AA genotype was also associated with a 

higher risk of ATDH (OR=3.68, 95%CI: 1.18–11.36, p=0.025) and (OR=2.00, 95%CI: 

1.05–3.83; p=0.035) respectively, in comparison to GG or AG genotype. In the 

retrospective study, rs4147581 was not associated with a differential risk, supporting the 

hypothesis that the initial association was due to LD. It is important to notice that 

rs1695.A presents high frequency in the whole world, especially in Asians16. 

         NOS2  

         INH is metabolized in the liver to hydrazine and acetyl isoniazid, which the latter 

can be further metabolized into acetyl hydrazine, accumulation of these compounds can 

lead to hepatotoxicity. Furthermore, this metabolism process, although necessary, creates 

reactive nitrogen species (RNS), that can be toxic to the cell. RNS can be produced by 

inducible nitric oxide synthase (iNOS), coded by the gene NOS229. Polymorphism in 

NOS2 can be correlated to different levels of RNS in hepatocytes. 

Nanashima et al.29 (2012) found an association between ATDH and NOS2-

rs1180344 (p=0.04). However, their low number of patients may have influenced this 

result, because in this review, with a higher N, this significant p-value was lost. On the 

contrary, rs3794764 was not associated with ATDH in this previous study but increasing 

its N, we found an association between this SNP and ATDH (Table 2, p=0.038). 

Additionally, Li et al. (2018)30 studied 157 children and found no association for NOS2 

variants. Using data from these studies, we could find some new associated loci from this 

gene. This demonstrates the importance of gathering data from different original studies 
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into a review, because we can increase the statistical power of the analyses and find new 

results. 

 

 

 

 

 

 

 

 

 
 

      NAT2  

         N-acetyltransferase-2 (NAT2) encodes an enzyme of the same name, responsible 

for metabolizing lipophilic compounds making them more water soluble, easing its 

elimination. For example, isoniazid can be acetylated and further metabolized into 

diacetyl hydrazine, which is nontoxic, by NAT2. But in its absence or lower functionality, 

isoniazid can suffer hydrolysis and form various toxic compounds, such as isoniazid 

hydrazine, N-hydroxy Acetyl-hydrazine and acetyl diazine31. 
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We included 51 articles investigating the association between NAT2 

polymorphisms and variability in the response to tuberculosis treatments. A total of 45 

genetic polymorphisms were evaluated across 8 ethnicities. Based on our statistical 

analyses, we identified potentially protective and risk alleles regarding treatment response 

for different ethnic groups, considering the significant frequency differences (p<0.05) 

between cases and controls. We observed 12 potential protective alleles and 3 potential 

risk alleles for Southeast Asians, and respectively, 1 and 3 for East Asians, 2 and 1 for 

South Asians, 1 and 1 for the not informed ethnicity group, and 1 protective allele for 

Africans. Alleles and frequencies of cases and controls, sorted by ethnicity, are available 

in Table 3. No significant differences were observed for Europeans, Middle Easterns, and 

Admixed. 

Individuals homozygous for the *4 allele are classified as fast acetylators, while 

heterozygotes with one slow allele are considered intermediate acetylators. Previous 

studies show that allele *4 carriers are less frequent in the group of patients who 

developed hepatotoxicity32,33. Significant differences of *4 in frequencies of cases and 

controls were observed in four out of the eight analyzed ethnicities, with higher 

frequencies found in controls: East Asian, Southeast Asian, South Asian, and African 

(p=0.000001, 0.00001, 0.00001 and 0.0348, respectively). This was the only significant 

finding for the African population. 
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The *6 (rs1799930) and *7 (rs1799931) alleles, when present in homozygosity, 

are associated with slow acetylation phenotypes; they were previously found at a higher 

frequency among individuals who developed hepatotoxicity in response to tuberculosis 

treatment34. Furthermore, heterozygous individuals carrying at least one of these alleles 

are classified as intermediate acetylators and may exhibit elevated levels of liver enzymes 

during treatment35. Significant differences in their frequencies were found between cases 

and controls in all 3 Asian populations we analyzed. In Brazilian populations, a study 

observed that patients diagnosed with HIV/AIDS and tuberculosis who carried the *6B 
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allele had a higher risk of developing hepatotoxicity in response to treatment36. These are 

SNPs that have been highlighted as important tagSNPs in pharmacogenetic testing for 

tuberculosis treatments in the literature37,38. 

It is worth noting that the analyzed SNPs were not only shown to be associated 

with the occurrence of adverse effects but were also sometimes related to the severity of 

these events. For instance, rs1495741 exhibited an increasing frequency in different 

degrees of severity of drug-induced liver injury. This association indicates that this SNP 

may play a role in the severity of adverse effects in patients undergoing tuberculosis 

treatment39. 

GWAS (genome-wide association studies) are valuable tools in PGx, allowing to 

identify genetic biomarkers that are relevant to some complex phenotypes, such as drug 

response, especially in neglected populations. However, it is important to notice that these 

studies are high-cost due to the need of high scale genotyping of the involved subjects40. 

According to the WHO41, it is estimated that 130,000 new cases of tuberculosis were 

reported in Thailand in 2021. A GWAS in Thai individuals have shown some promising 

results concerning NAT238. The authors have identified 9 NAT2 SNPs associated with 

anti-TB drug liver injury (rs1495741, rs4646246, rs4646267, rs4921914, rs4921913, 

rs10103029, rs10088333, rs7816847, rs12674710; p=5.0 x 10⁻⁸). These results highlight 

the importance of NAT2 polymorphisms and the risk of anti-TB drug liver injury. 

Several limitations were identified in the conduct of this study. In some instances, 

there was a discrepancy in the number of cases and controls, which could potentially 

impact statistical analyses. Additionally, a few papers failed to differentiate between 

cases and controls when reporting polymorphism frequencies or reported combined 

frequencies of heterozygotes and homozygotes. Such cases were excluded from the 

statistical analyses. The use of multiple terms to refer to a single polymorphism or gene 

was also considered a limitation. Furthermore, it was observed that in certain studies, the 

ethnicity of the individuals was not disclosed; when ethnicity was provided, there were 

instances where polymorphism frequencies were not reported separately for each ethnic 

group, and thus were classified as "Not informed". 

Moreover, a pattern of not infering star alleles from rs ID was noticeable. Some 

authors have also performed the inference using only one SNP, whereas others used two 

or more SNPs. For this reason, we have collected data comprising rs ID and star alleles, 

as reported in the article, so in this case an overlapping of individuals and genetic variants 

could have occurred. 
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CONCLUSIONS 

 

Through the analyses performed here, we found significant differences in the 

frequencies of cases and controls regarding 5 genes: NAT2, mainly, GSTP1, 

CYP2C19/CYP2C9, ABCC2, and NOS2. As a result, we were able to pinpoint potential 

protective and risk variants that are specific to each ethnicity, which is of utmost 

importance if personalized treatments are to become accessible to all populations in the 

future. Furthermore, it is important to highlight the importance of systematic reviews in 

this context: in an effort to bring together the currently available pharmacogenetic data in 

reference to tuberculosis one can re-analyze such data, this time with a larger number of 

studied individuals and therefore greater statistical power, so as to obtain more 

statistically reliable results. Here we suggest further directions to be taken by future 

initiatives aiming to maximize the efficacy and minimize adverse effects of anti-

tuberculosis treatments. 
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