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ABSTRACT 

With the intensification of production systems and the need to reduce water use, there is a greater 

likelihood of sudden changes in water quality, leading to fish mortality. Therefore, it is necessary 

to develop techniques that increase environmental homeostasis. This experiment evaluated the 

influence of calcium-magnesium silicate and soil compared to calcium carbonate and calcium-

magnesium carbonate, traditional alkalizers, as environmental stabilizers in cultivating Nile tilapia 

larvae in a recirculating system. The experiment was composed of five treatments: Control) 

aquarium containing only water; Soil) water and soil; Calcitic) water and calcium carbonate 

(CaCO3); Dolomite) water and dolomitic limestone (CaCO3 MgCO3) and Silicate) water and 

calcium-magnesium silicate (CaSiO3 MgSiO3). After 30 days, the performance parameters, weight, 

standard length, total length, Fulton condition factor, weight gain, biomass, biomass gain, and 

survival, did not differ among treatments. Among the water quality parameters, temperature (30 

°C) and oxygen (5 to 6 mg L-1) were maintained with heaters and aeration throughout the period. 

The parameters conductivity, pH, redox potential, salinity, turbidity, ammonia, nitrite, nitrate, 

alkalinity, hardness, calcium, magnesium, and silica were measured. The pH was higher in the 

silicate and calcitic treatments than in the control. The dolomitic treatment was higher for the redox 

potential than in the soil. The electrical conductivity was higher in the soil treatment than in the 

control. The turbidity in the soil was higher than in the other treatments. Salinity was higher in 

treatments that received liming products but with low values. Ammonia concentration was higher 

in the control treatment than in the silicate. Nitrite and nitrate concentrations did not differ between 

treatments. Alkalinity was higher in the silicate treatment. Hardness was higher in the calcitic, 

dolomitic, and silicate treatments than in control and soil. Calcium dissolved in water was higher 

in the calcitic and silicate treatments than in the control and soil. Silica dissolved in water was 

higher in silicate. Calcium-magnesium silicate is a viable and recommended alternative for liming, 

as it presents results equivalent to calcitic and dolomitic limestone, traditional salts for this practice, 

which confirms its importance in maintaining water quality and fish performance. Although the 

soil has a buffering capacity in the water, it is less effective than other products and deserves further 

study. 
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RESUMO 

Com a intensificação dos sistemas de produção e a necessidade de redução do uso de água, há 

maior probabilidade de mudanças bruscas na qualidade da água, levando à mortalidade de peixes. 

Portanto, é necessário desenvolver técnicas que aumentem a homeostase ambiental. Este 

experimento avaliou a influência do silicato de cálcio-magnésio e do solo em comparação ao 

carbonato de cálcio e ao carbonato de cálcio-magnésio, alcalinizantes tradicionais, como 

estabilizadores ambientais no cultivo de larvas de tilápia do Nilo em sistema de recirculação. O 

experimento foi composto por cinco tratamentos: Controle) aquário contendo apenas água; Solo) 

água e solo; Calcítico) água e carbonato de cálcio (CaCO3); Dolomítico) água e calcário dolomítico 

(CaCO3 MgCO3) e Silicato) água e silicato de cálcio-magnésio (CaSiO3 MgSiO3). Após 30 dias, 

os parâmetros de desempenho, peso, comprimento padrão, comprimento total, fator de condição 

de Fulton, ganho de peso, biomassa, ganho de biomassa e sobrevivência, não diferiram entre os 

tratamentos. Entre os parâmetros de qualidade da água, a temperatura (30 °C) e oxigênio (5 a 6 mg 

L-1) foram mantidos com aquecedores e aeração durante todo o período. Os parâmetros 

condutividade, pH, potencial redox, salinidade, turbidez, amônia, nitrito, nitrato, alcalinidade, 

dureza, cálcio, magnésio e sílica foram medidos. O pH foi maior nos tratamentos silicato e calcítico 

do que no controle. O tratamento dolomítico foi maior para o potencial redox do que no solo. A 

condutividade elétrica foi maior no tratamento solo do que no controle. A turbidez no solo foi maior 

do que nos outros tratamentos. A salinidade foi maior nos tratamentos que receberam produtos de 

calagem, mas com valores baixos. A concentração de amônia foi maior no tratamento controle do 

que no silicato. As concentrações de nitrito e nitrato não diferiram entre os tratamentos. A 

alcalinidade foi maior no tratamento silicato. A dureza foi maior nos tratamentos calcítico, 

dolomítico e silicato do que no controle e solo. O cálcio dissolvido em água foi maior nos 

tratamentos calcítico e silicato do que no controle e solo. A sílica dissolvida em água foi maior no 

silicato. O silicato de cálcio-magnésio é uma alternativa viável e recomendada para calagem, pois 

apresenta resultados equivalentes aos calcários calcítico e dolomítico, sais tradicionais para essa 

prática, o que confirma sua importância na manutenção da qualidade da água e no desempenho dos 

peixes. Embora o solo tenha capacidade tampão na água, ele é menos eficaz que outros produtos e 

merece estudos mais aprofundados. 

PALAVRAS-CHAVE: Alcalinidade; Calagem; Dureza; Homeostase da água, pH. 

 

INTRODUCTION 

 

 The annual production growth recorded since 2000 is due to the intensification process, 

where production management, food, and biosecurity have improved. In this sense, aquaculture 

needs to pay greater attention to the health of the production environment, where keeping water 

quality is a challenge1. Meeting the global demand for aquatic products and, at the same time, 

maintaining sustainability is a critical challenge where it is necessary to combine technological 

solutions, innovations, and best management practices, increasing efficiency in an ecosystem 

approach to aquaculture resources2. 
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 Elevated alkalinity levels have been used in aquaculture to prevent rapid pH fluctuations, 

improve water quality, maintain the health and well-being of fish, and increase production in 

intensive systems characterized by numerous physical, chemical, and biological interactions3. 

 Although alkalinity, as well as total hardness, another environmental stability parameter 

closely related to alkalinity, are familiar variables in aquatic animal production, where both 

scientists and aquaculturists have some knowledge of methods for adjusting their concentrations, 

their chemical relationships and biological effects are more complex than generally realized or 

described in the literature4. 

 Alkalinity is necessary for pH stability, which has a direct impact on the toxicity of 

ammonia, CO2, and other metabolic compounds, as well as providing inorganic carbon for 

nitrifying bacteria, which are essential for the functioning of the culture, as well as on the efficiency 

of critical processes such as nitrification and CO2 removal (Jafari et al., 2024)3. Interactions are 

diverse, with different responses requiring detailed assessments3-5. 

 Calcitic limestone, composed of calcium carbonate, and dolomitic limestone, calcium 

carbonate with magnesium, are the alkalizing agent generally used because they are easily 

accessible and cheap6. Other products that increase alkalinity have been used, such as calcium 

silicate, which is occasionally used4, sodium carbonate, which is highly soluble and reacts quickly 

been is safe for fish and humans as well as sodium bicarbonate and calcium hydroxide, this which, 

despite being dangerous, is commonly used because it is cheaper and more readily available than 

sodium carbonate7. However, with intensification, production in closed systems requires 

adjustments, such as using new products or the same alkalinizing products with different quality 

and concentrations than those usually used5. 

 In the aquaculture intensive, the alkalizing agents also have been selected based on results 

associated with ease of obtaining and price, and this is the case with sodium silicate, sodium 

bicarbonate, and calcium carbonate powder used in the recirculation system8, and sodium 

bicarbonate, calcium carbonate or calcium hydroxide in a biofloc system9. 

 Sodium bicarbonate (NaHCO3) has been used in intensive systems due to its efficiency in 

rapidly increasing alkalinity and pH, being safe for both animals and fish farmers, in addition to 

being affordable8,9. Calcium hydroxide (Ca(OH)2) is also very efficient in increasing pH and 

alkalinity, producing good results in intensive production systems. However, because it is highly 

reactive, it can cause fish mortality and should be used more sparingly9. Calcium carbonate powder 
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increases pH and alkalinity for a prolonged period, taking longer to dissolve8, and generates greater 

turbidity, which can compromise fish growth9. Sodium silicate dissolves quickly, promptly altering 

the pH and presenting results closed with sodium bicarbonate and calcium carbonate8. 

 Although calcium silicate raises alkalinity and pH to a level slightly below that of 

agricultural limestone and has a water solubility similar to that of calcium carbonate10, there is 

rarely a study evaluating its efficiency in an intensive fish culture system, even in a conventional 

system, which generates a demand for studies with this product. 

 The sediment at the bottom of the tank is an essential part of the farming ecosystem, 

exchanging nutrients at the soil-water interface, with feldspars composed of calcium silicate raises 

the pH4 while the aluminum acidifying10 influencing water quality and, consequently, affecting 

animal growth and welfare11,12. Despite the importance of sediment in this ecosystem, sediment 

has yet to be studied as a possible factor in improving conditions in intensive systems of tilapia 

larva culture. 

 For the reasons described above, this work aimed to evaluate the influence of calcium-

magnesium silicate and soil compared to traditional limning calcium carbonate and calcium and 

magnesium carbonate on tilapia larva culture. 

 

MATERIAL AND METHODS 

 

The experiment to evaluate the effect of different forms of liming on Nile tilapia larvae was 

carried out during 30 days in the Aquaculture Laboratory of Aquatic Ecology, DZO - UFVJM, in 

Diamantina (Latitude 18°14'17 "South, longitude 43°36'40"West), located in the region of the 

Southern Espinhaço Ridge. The study was approved by the Ethics Committee on Animal Use 

(CEUA) of UFVJM (nº 031/2019 /CEUA-UFVJM) protocolo 001\2017. The experiment was 

composed of five treatments being: Control) aquarium containing only water; Soil) water and soil; 

Calcitic) water and calcium carbonate (CaCO3); Dolomite) water and dolomitic limestone (70% 

CaCO3 • 30% MgCO3) and Silicate) water and calcium-magnesium silicate (CaSiO3 MgSiO3). The 

treatments were randomly distributed in a completely randomized design, with five replicates each, 

being 25 aquariums. The aquarium had 10 L, aeration (40 ml min-1, >4.7 mg L-1 O2), temperature 

(30 °C), and photoperiod (12 h lightness: 12 h dark) constants. In each sampling unit 0.3 g of the 

salt L-1 was added. 
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 The water at the beginning of the experiment had: alkalinity (30.20 mg L-1 of CaCO3), pH 

(7.0), calcium (6.0 mg L-1), hardness (17.0 mg L-1), silica (0.02 mg L-1) and magnesium (11.0 mg 

L-1). The soil samples (Table 1) were air-dried, homogenized, and sieved through a 2 mm mesh 

(sieve no. 10). Was added 1.2 liters of soil aquarium-1. 

 

Table 1. Mean values and standard deviation of the soil composition. 

Textural composition Amount (%) 

Sand 37.8 ±0.42b 

Silt 46.0±0.00a 

Clay 16.2±0.42c 

Sieve aperture (mm) Retained amount (%) 

2,00 11.6 ± 0.65c 

1,00 13.6 ± 0.58c 

0,50 17.4 ± 0.29b 

0,250 19.0 ± 0.14b 

0,106 26.7 ± 0.81a 

<0,106 11.4 ± 0.82c 

Physico-chemical characteristics Mean values 

pH 6.9 ± 0.51 

Redox potential (mV) 242.3 ± 17.55 

Electric conductivity (mS cm-1) 0.03 ± 0.02 

Density (g L-1) 1.07 ± 0.02 

Means followed by distinct letters, in the same sections of the columns, differ by the Tukey’s test, 0.05 probability. 

 

The experiment began with 375 specimens of Nile tilapia larvae weighing 0.02 ± 0.00 g, 

measuring the standard length of 1.12 ± 0.08 cm and total length of 0.93 ± 0.08 cm, and 

subsequently distributed 15 animals per aquarium at a density of 1.5 larvaL-1. The animals were 

fed commercial powdered feed, with crude protein (min.) 550 g kg-1, ether extract (min.) 80 g kg-

1, fibrous matter (max.) 30 g kg-1, mineral matter (max.) 160 g kg-1, calcium (max.) 30 g kg-1, 

phosphorus (min.) 14 g kg-1 and moisture (max.) 100 g kg-1, according to the manufacturer's 

specifications, offering until apparent satiation, in three meals: 8, 12 and 16 h. 

Twice a week (Monday and Thursday), the aquariums were cleaned by siphoning, and 20% 

of the volume was renewed and replaced with a specific stock solution for each treatment. Before 

feeding the fish, every fifteen days (1, 15, and 30 days), water samples were obtained from each 

aquarium to control their parameters. The parameters measured were: temperature (oC), pH, redox 

potential (mV), conductivity (mScm-1), salinity (‰), turbidity (NTU) using a HORIBA U10® 

measuring probe; alkalinity (mg L-1), hardness (mg L-1), calcium (mg L-1), magnesium (mg L-1) 
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using the titrimetric method; and the concentrations of ammonia (mg L-1), nitrite (mg L-1), nitrate 

(mg L-1) and silica (mg L-1) using the spectrophotometric method, as indicated by APHA13. 

At the end of the experiment, measurements of total and standard length (cm) were taken 

with a digital caliper (Starret) with an accuracy of 0.02 mm and weight (g) with an analytical 

balance with an accuracy of 0.01 g when the number of individuals was also counted to calculate 

survival (%). From these records, weight gain (g) = (final weight - initial weight), biomass (g) 

(average weight x number of specimens per aquarium), biomass gain (g) = (final biomass - initial 

biomass), and Fulton's condition factor (K) [(= 100 × (total length weight−3), were calculated. 

The data were subjected to normality tests (Shapiro-Wilk) and homoscedasticity. Survival 

data were transformed into arcsine for statistical analysis but were shown in percentages. The data 

were subjected to one-way ANOVA and Tukey's test at a significance level 0.05. For calculations, 

the R software was used. 

 

RESULTS 

 

The parameters of growth and survival of Nile tilapia larvae are presented in Table 2. Total 

length, standard length, weight, weight gain, biomass, biomass gain, Fulton condition factor, and 

survival did not show differences between treatments. 

The water quality parameters in the different treatments in the Nile tilapia larvae culture are 

shown in Tables 3, 4, and 5. The data on dissolved oxygen in the water, nitrite, nitrate, and 

magnesium did not differ significantly according to the products tested (p>0.05). The parameters 

pH, redox potential, electrical conductivity, turbidity, salinity, ammonia, alkalinity, hardness, 

calcium, and silica showed significant differences (p<0.05) between the liming products and the 

soil, as well as the absence of them. 
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Table 2. Mean values, standard deviation, and coefficient of variation from the performance of 

the Nile tilapia larvae subjected to different liming products for 30 days. 

 Weight (g) Total length (cm) Standard length (cm) 
Fulton condition 

factor 

Water 3.63±0.22 2.86±0.23 0.73±0.19 15.83±2.86 

Calcitic 3.54±0.08 2.72±0.12 0.59±0.09 17.66±1.90 

Dolomitic 3.70±1.54 2.89±1.20 0.76±0.42 16.38±5.23 

Soil 3.65±0.19 2.84±0.14 0.77±0.16 16.01±1.45 

Silicate 3.61±0.16 2.83±0.13 0.67±0.10 15.92±1.73 

CV (%) 7.76 8.73 30.13 19.56 

 Weight gain (g) Biomass (g) Biomass gain (g) Survival (%) 

Water 3.61±0.22 50.23±9.53 49.93±9.53 92.0±16.0 

Calcitic 3.52±0.08 51.05±2.17 50.75±2.17 96.0±3.26 

Dolomitic 3.68±0.47 43.49±19.26 43.19±19.26 64.0±44.54 

Soil 3.63±0.19 50.55±6.47 50.25±6.47 92.0±9.79 

Silicate 3.59±0.16 51.37±5.06 51.37±5.06 94.6±7.77 

CV (%) 7.8 22.19 22.32 20.92 

In the same column, means did not differ, according to the Tukey test, at 0.05 probability. 

 

 The pH was higher (p<0.05) in the silicate and calcitic treatments than in the control, and 

the others did not differ from each other. For the redox potential, the dolomitic treatment was higher 

(p<0.05) than in the soil, and the others did not differ from each other. The electrical conductivity 

was higher (p<0.05) in the soil treatment than in the control, and the others did not differ from each 

other. The turbidity in the soil was higher (p<0.05) than in the other treatments. 

 

Table 3. Mean values, standard deviation, and coefficient of variation of the water quality of Nile 

tilapia larvae culture subjected to different liming products for 30 days. 

 pH ORP (mV) 
Conductivity (mS 

cm
-1

) 
Turbidity (NTU) 

Water 7.47 ±0.49c 190.4±47.47ab 0.20±0.01b 169.1±111.66b 

Calcitic 7.97±0.28a 162.9±41.34ab 0.21±0.00ab 209.1±98.99b 

Dolomitic 7.81±0.37ab 194.8±62.55a 0.21±0.00ab 163.7±136.89b 

Soil 7.58±0.42bc 156.0±21.42b 0.35±0.02a 355.1±214.51a 

Silicate 8.09±0.38a 170.6±49.12ab 0.28±0.00ab 164.0±186.91b 

CV (%) 3.81 20.83 35.42 66.21 

Means followed by different letters in the columns differ, using the Tukey test, at 0.05 probability. ORP= oxidation 

reduction potential. 

 

 Salinity was higher (p<0.05) in treatments that received liming products but with low 

values. Ammonia was higher (p<0.05) in the control treatment than in the treatment with silicate, 

and the others did not differ from each other. Nitrite and nitrate concentrations did not differ 

(p>0.05) between treatments. 
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Table 4. Mean values, standard deviation, and coefficient of variation of the water quality of Nile 

tilapia larvae culture subjected to different liming products for 30 days. 

 
DO 

(mg L-1) 

Salinity 

(‰) 

Ammonia (mg 

L-1) 

Nitrite  

(mg L-1) 

Nitrate 

(mg L-1) 

Water 4.8±0.73a 0.00±0.00b 0.03±0.03a 0.16±0.27a 0.17±0.33a 

Calcitic 4.7±0.66a 0.01±0.00ab 0.02±0.02ab 0.14±0.25a 0.18±0.25a 

Dolomitic 6.6±4.75a 0.01±0.00a 0.02±0.03ab 0.09±0.16a 0.11±0.31a 

Soil 4.7±1.05a 0.00±0.00b 0.02±0.02ab 0.07±0.18a 0.02±0.08a 

Silicate 4.8±0.81a 0.01±0.00a 0.01±0.01b 0.02±0.06a 0.05±0.12a 

CV (%) 45.74 39.47 65.17 192.31 187.25 

Means followed by distinct letters in the column vary by Tukey's test at 0.05 probability. ns Not significant. * 

Significant by Tukey's test at 0.05 probability. DO = Dissolved oxygen. 

 

Alkalinity was higher (p<0.05) in the silicate treatment and did not differ among the 

others. Hardness was higher (p<0.05) in the calcitic, dolomitic, and silicate treatments to the 

control and soil. Calcium dissolved in water was higher (p<0.05) in the calcitic and silicate 

treatments than in the control and soil. Silica dissolved in water was higher (p<0.05) in silicate. 

 

Table 5. Mean values, standard deviation, and coefficient of variation of the water quality of Nile 

tilapia larvae culture subjected to different liming products for 30 days. 

 
Alkalinity 

(mg L-1) 

Hardness 

(mg L-1) 

Calcium 

(mg L-1) 

Magnesium 

(mg L-1) 

Silica 

(mg L-1) 

Water 48.80±17.84b 39.3±22.45b 27.6±20.09b 11.6±8.31a 0.01±0.00b 

Calcitic 52.27±20.64b 84.74±27.13a 70.3±31.14a 11.6±10.28a 0.01±0.01b 

Dolomitic 52.73±19.30b 69.3±31.21a 53.3±23.09ab 16.0±19.35a 0.01±0.00b 

Soil 51.27±24.20b 37.0±14.36b 26.3±11.33b 10.6±7.27a 0.01±0.01b 

Silicate 67.27±25.59a 90.7±39.48a 79.07±35.95a 14.3±13.16a  0.30±0.01a 

CV (%) 22.54 21.24 22.65 80.96 29.95 

Means followed by distinct letters in the column vary by Tukey's test at 0.05 probability. ns Not significant. * 

Significant by Tukey's test at 0.05 probability.  

 

DISCUSSION 

 

Larval performance 

 Larval performance and survival did not differ according to the liming products. 

Although these products provided differences in water quality parameters, they remained within 

the range considered suitable for the cultivation of larvae14-16 and juveniles17,18 of the species, 

which explains the similarity in animal performance between the treatments tested. 
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Water quality 

Water quality is the most critical factor affecting the health and performance of fish in 

production systems. They depend on the water they live in, which makes it necessary to understand 

the water quality conditions required by fish19. 

The temperature (30 °C) maintained by the heaters was similar between treatments and 

within the suitable range for the species. Studies report that the appropriate range varies from 20.2 

to 31.7°C, with the ideal temperature being 26.0°C20, with the highest growth rates observed at 26 

and 30 °C21 and 28 and 34°C22. 

Throughout the period, aeration maintained similar dissolved oxygen levels between 

treatments and within the range (5 to 6 mg L-1) considered adequate for the survival and growth of 

Nile tilapia23-25 and for tropical species26. 

The redox potential (ORP) showed averages between 156.0 and 194.8 mV, close to values 

considered adequate for tilapia cultivation in a biofloc system, 155.33 mV27. The redox potential 

values of this experiment are consistent with the oxygen concentrations, which were maintained at 

constant rates (> 4.7 mg L-1) and with the pH (7.47 to 8.09) associated with periodic cleaning to 

remove organic matter. Pond management influences the behavior of the redox potential, and 

knowing the potential profile can help understand the welfare and immunity of animals28. A high 

and positive redox potential generally indicates an oxidizing environment, rich in oxygen and more 

suitable for aquatic organisms, while an environment with negative values indicates reducing 

water27-29. Under high redox values, conditions are usually favorable for bacteria to decompose 

organic matter and contaminants more efficiently30. Several factors interact and interfere with the 

redox potential, such as the distribution in the water column, whether closer to the surface or the 

sediment-water interface, and factors such as the decomposition of organic matter and the 

metabolism of microorganisms, which decrease the potential, among others29. Therefore, the 

oxidation-reduction potential conditions were favorable to tilapia in all treatments due to this 

experiment's relatively homogeneous environments, with constant oxygenation, water renewal, and 

periodic cleaning in a reduced space. 

Even though the initial phases of tilapia are more susceptible than adult specimens to 

changes in pH31,32 the narrow pH range observed in this experiment was favorable to the well-being 

and development of the species, which can be measured by the survival values found. 
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The water in the aquariums without the addition of products and with soil at the bottom that 

did not receive liming products had a slight pH fluctuation, as in the other treatments, due to the 

alkalinity of their waters (48.80 and 51.27 mg L-1, respectively). The pH keeping occurs because 

alkalinity has a buffering effect that minimizes fluctuations in water pH, avoiding stress in fish, 

with the minimum values suggested for aquaculture being 20 mg L-1 CaCO3 of alkalinity6 to 40 mg 

L-1 CaCO3
33. Soil aquariums could present low pH and alkalinity, being susceptible to sudden 

changes in pH since the soil is usually a source of acidity due to aluminum ions, clay, and 

negatively charged organic matter particles, attracting cations to their surfaces, in addition to low 

concentrations of bicarbonate, carbonate, calcium, and magnesium34, which was not observed in 

this experiment, in which the pH of the water, in the various treatments, ranged from 7.5 (water) 

to 8.1 (silicate), being within the range considered suitable for the growth of larvae14,35,36 and 

juveniles37 of Nile tilapia. 

The alkalinity of this experiment presented an adequate range with slight oscillation (48.80 

to 67.27 mg L-1), which explains why no difference was observed in larval growth. The values 

were almost similar for all treatments except for silicate, which were slightly higher. 

Although waters with higher alkalinity tend to have higher fish production due to the more 

significant buffering effect, with less fluctuation in pH4, the results depend on the alkalizing 

product8,9 and the adequate concentration, for each species and stage of development31,38. 

The values were similar to those found in the culture of Nile tilapia larvae, which grew 

more when subjected to 32 mg L-1 of CaCO3 than to 15 or 55 mg L-1 of CaCO3
31. The alkalinity 

levels were also similar to those observed in the culture of tilapia juveniles in bioflocs in which 

sodium bicarbonate (NaHCO3 75.76 mg L-1), calcium carbonate (CaCO3 49.95 mg L-1) or calcium 

hydroxide (Ca(OH)2 54.58 mg L-1) were used, in which the juveniles presented greater weight 

when subjected to the highest alkalinity (75.76 mg L-1), and worse in the lowest (49.95 mg L-1), a 

difference that was associated with a change in management due to the characteristics of the 

alkalizing agents9. The survival (91.0%) of the fish was similar to that found for Nile tilapia 

(88.3%) subjected to different alkalinities (9.2, 15.5, 30.8, 73.0, and 90.4 mg L-1) obtained by other 

products (CaCO3, Na2CO3 or CaSO4) where the increase in alkalinity by CaSO4 provided a 

negative effect39. The values observed in this experiment, adding the values of the studies above, 

indicate that the alkalinity was within the range suitable for the growth of Nile tilapia larvae. 
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Despite the lower hardness levels observed in aquariums without products (control) and in 

soil, the hardness range in this experiment was within that considered adequate for the species39-41, 

which generated similar animal performance between treatments. Water hardness increases the 

antioxidant response, reduces the toxicity of some substances, the loss of ions, buffering the 

environment and favoring fish development42-45. Nile tilapia juveniles perform better when total 

hardness is greater than 20 mg CaCO3 L
-1 39, and when water hardness is less than 25 mg L-1, 

limestone should be applied46. Since the water used in the experiment initially had 17 mg L-1 and 

increased in the control treatment, which was only water, calcium in the feed helped to increase 

hardness. The initial hardness required the application of the alkalizing agent. Increased hardness 

and decreased alkalinity in closed aquaculture systems have been reported47. 

Regarding calcium, a higher amount occurred in the treatments that received liming 

products, similar to that observed by Antonangelo et al.48. However, even the control and soil group 

showed an increase in the amount of calcium dissolved in the water compared to the first day of 

collection due to the calcium in the feed offered to the fish, as observed in the cultivation of 

cachama blanca, Piaractus brachypomus in a recirculation system, where hardness increased49. 

Magnesium, on the other hand, was not added enough to provide a significant difference, unlike 

that observed by Antonangelo et al.48. 

Calcium and magnesium ions are essential for water hardness and alkalinity6 and ionic 

regulation in freshwater fish39. Aquatic animals have unique physiological mechanisms to absorb 

and retain minerals, such as calcium, magnesium, and phosphorus, through their diets and directly 

from water, through gill and skin absorption, with excessive intake or deficiency being harmful to 

fish50,51. Magnesium deficiency causes skeletal deformities, cardiovascular diseases, and metabolic 

syndrome52, such as nephrocalcinosis51, damage to the structural integrity of the intestine, 

suppressing fish growth53. Calcium deficiency compromises skeletal formation54, resulting in fish 

with deformities50. 

Excess is also a problem, as high levels of calcium (31.0 g kg−1 of feed) in the diet of 

Japanese sea bass, Lateolabrax japonicus, significantly reduced weight, weight gain, feeding rate, 

specific growth rate, whole-body and muscle protein and lipid contents, as well as serum Ca 

concentration and alkaline phosphatase activity. There was even a significant reduction in the 

vertebral contents of Ca, P, Zn, Fe, and Mn and the contents of Ca, P, Mg, and Mn in scales, leading 

to a higher rate of fish deformation50. It is also worth noting that magnesium helps to activate 
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vitamin D, which helps to regulate calcium and phosphate homeostasis, which influences bone 

growth and maintenance52. 

As no deformities were observed and growth was equal between treatments and within 

expectations, calcium and magnesium levels were adequate for tilapia larvae. 

The higher concentration of silica in water with added silicate was expected, as also 

observed by Emerenciano et al.55. Silica is the second most abundant component in the Earth's 

crust, making up the silicate of rocks that dissolve in natural waters56. However, due to the low 

solubility of this mineral, these waters generally have low alkalinity and total hardness, both in 

surface waters and aquifers composed of sand and/or silicate minerals7. However, when in the form 

of calcium silicate (CaSi03) or sodium silicate (Na2Si03), the solubility is sufficient for this material 

to be used for liming, neutralizing the hydrogen ion, in addition to serving as a source of silica for 

diatoms7,56, which increase their population, improving shrimp growth performance, inhibiting 

pathogenic vibrios, increasing the profit of the activity55. 

Calcium-magnesium silicate was promising as a promoter of a stable environment for 

tilapia larvae culture, as it allowed suitable water quality parameters, in addition to the development 

and survival being similar to those of tilapia larvae grown in waters with calcium carbonate and 

calcium and magnesium carbonate, known to be suitable for fish farming7. The results of the larvae 

in water with silicate were also similar to those kept in water with soil, an element that makes up 

the natural environment of tilapia. Menezes et al.57 obtained similar results in the yield and survival 

of tilapia juveniles subjected to water with the addition of calcium silicate, dolomitic limestone and 

calcitic limestone, as well as de Souza et al.8 obtained similar results in the yield and survival of 

jundiá Rhamdia quellen juveniles subjected to water with the addition of sodium silicate, sodium 

bicarbonate and calcium carbonate. 

Agronomic studies also reinforce the findings regarding water quality in this experiment, 

where calcium and magnesium silicate significantly increased pH, calcium, magnesium, and 

silicon, reducing the elements that promote acidity48. Other results evaluating calcium and 

magnesium silicate prove the high power of neutralizing soil acidity when compared to dolomitic 

limestone58 and that calcium silicate is 6.8 times more soluble than calcium carbonate, favoring the 

correction of acidity59. 
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The electrical conductivity was within the acceptable range, 1000 μS cm-1, for fish farming6. 

The conductivity of the water in aquariums with soil was significantly higher than that of aquariums 

with only water. The others were similar to all. 

Tank soils interact with water, altering its characteristics60. Soil conductivity results from 

its composition, with soils richer in clay and smaller particles with higher conductivity than sandy 

soils61. Therefore, the soil's presence explains the water's higher conductivity. 

However, despite increasing the electrical conductivity of the water62,63, the different liming 

products did not increase the conductivity compared with the control treatment (water only). High 

conductivities can also be related to a large amount of organic matter in the water, usually from the 

feed64. Waters rich in phosphate, among other nutrients, generally have a higher conductivity, 

which could make the electrical conductivity of the water an indicator of eutrophication61. 

However, the amount of nutrients added by the feed was similar between treatments, justifying the 

high conductivity values and the similarity of the results. 

The turbidity of the soil treatment was higher than that of the others, which the suspension 

of sediment particles can explain. Suspended clay is responsible for much of the turbidity of the 

water in fish ponds65. 

Turbidity has been considered a problem in the cultivation of Nile tilapia juveniles9,65,66 

when it affects fish development9,66, and even when it does not interfere65. The increase in turbidity 

can also be caused by liming products added to the environment9,67, although it did not increase 

turbidity in this experiment. Although tilapia do not suspend much clay from the bottom of 

excavated tanks66, they increase turbidity by suspending particles from the bottom of the tank in 

this intensive system due to the fish swimming in environments with reduced space. 

Total ammonia concentrations were low and within the comfort range for cultivating tilapia 

larvae14,36. 

Considering that Nile tilapia larvae did not have their growth and survival compromised 

when subjected for 80 days after hatching to a concentration of 0.25 mg L-1 of non-ionized 

ammonia, becoming affected at 0.45 mg L-1 68, and the average LC50 value at 48 h was 1,009 mg 

L-1 for the larvae69, the ammonia concentration was within the adequate range for Nile tilapia 

larvae. 

As with ammonia, nitrite and nitrate concentrations were similar to the values considered 

adequate for raising Nile tilapia larvae14,36, and were below the concentrations considered safe 
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limits for fish farming, which are 0.5 mg L-1 and 4.5-5.0 mg L-1 of nitrite and nitrate, respectively70, 

71 or even of the ideal concentrations of 0.3 mg L-1 and 25.0 mg L-1 of nitrite and nitrate, 

respectively72. 

Although these limit values exist, the nitrite level considered comfortable varies with the 

species, stage of development, and interactions with other water parameters. For juveniles of the 

yam Cichlasoma facetum, a cichlid like tilapia, the safety limit is 7.0 mg L−1 73, while for juveniles 

of Rhamdia quelen, the adequate limit that does not compromise growth and survival is 1.19 mg 

L−1 74. Rainbow trout gets stressed by 0.15 mg L−1 of nitrite and die by 0.55 mg L−1. Channel catfish 

are more resistant to nitrite, starting to die at 29 mg L−1. However, water should be checked 

whenever 0.1 mg L−1 or more of nitrite is present73. Although nitrite values in the aquariums with 

only water (0.16 mg L−1) and in the calcitic limestone (calcium carbonate – 0.14 mg L−1) were 

above 0.1 mg L−1, they were adequate for the species. 

The low values of nitrogen compounds explain why the alkalinities did not change much. 

The nitrification process by bacteria reduces alkalinity by releasing H+ ions into the water47, while 

the oxidation of 1 mg L-1 of ammonia reduces alkalinity by 7.14 mg L-1 7. Therefore, the low 

nitrogen compound concentrations resulted in low alkalinity consumption, which remained within 

a range suitable for Nile tilapia larvae. 

The salinity variation was slight and remained within the range considered freshwater when 

the salinity is less than 1‰75. The early life stages of Nile tilapia are euryhaline. Although low 

salinities negatively affect hatching rates, survival, and yolk sac absorption, larvae six days after 

hatching tolerate salinities of up to 20‰76. Since Nile tilapia tolerate salinities from 7‰77 to 

22.5‰78 and can be cultured in waters with up to 30‰, if properly acclimated and fed79, the 

salinities were adequate for larval development. 

 

CONCLUSION 

 

Calcium-magnesium silicate is a viable and recommended alternative for liming, as it presents 

results equivalent to calcitic and dolomitic limestone, traditional salts for this practice, which confirms its 

importance in maintaining water quality and fish performance. Although the soil has a buffering capacity in 

the water, it is less effective than other products and deserves further study. 
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