Efeito do uso de coroas não circulares sobre o desempenho de ciclistas: revisão de literatura.

Thiago Faria dos Santos, Eduardo Henrique Zanella de Arruda, Filipe Gonçalves Mesquita, Paulo Roberto Pereira Santiago

Resumo


Objetivo: Verificar a influência do uso de coroas-não-circulares (CNC) e coroas-circulares (CC) sobre os parâmetros biomecânicos, fisiológicos e no desempenho de ciclistas. Métodos: Após busca nas principais bases de dados (PubMed, SpringLink, ScienceDirect, ScienceReserch e Google Scholar), foram encontrados 31 artigos relacionados ao tema, dos quais 13 foram selecionados para uma análise aprofundada. Três artigos estudaram a CNC Biopace®, cinco a CNC Osymetric®, cinco a CNC Q-Ring® e três estudaram outros tipos de CNC. Resultados: Nove dos 13 artigos revisados apresentaram em seus resultados algum tipo de interferência nas variáveis analisadas. Conclusão: O uso de CNC apresentou efeito positivo, principalmente em atividade anaeróbia, com é o caso de modalidades como BMX, mas ainda existe pouca comprovação da melhora no desempenho em atividades aeróbias. Outras alterações foram, a redução do momento de força sagital durante extensão do joelho e o aumento de força tangencial nos pedais.


Palavras-chave


Coroas não circulares, desempenho, ciclismo

Texto completo:

P.18-22

Referências


Herlihy DV. Bicycle: the history: Yale University Press; 2004.

Ferrer-Roca V, Roig A, Galilea P, García-López J. Influence of saddle height on lower limb kinematics in well-trained cyclists: static vs. Dynamic evaluation in bike fitting. J Strength Cond Res. 2012;26(11):3025-9.

Martin J, Spirduso W. Determinants of maximal cycling power: crank length, pedaling rate and pedal speed. Eur J Appl Physiol. 2001;84(5):413-8.

Richardson RS, Johnson SC. The effect of aerodynamic handlebars on oxygen consumption while cycling at a constant speed. Ergonomics. 1994;37(5):859-63.

Hansen EA, Jensen K, Hallén J, Rasmussen J, Pedersen PK. Effect of chain wheel shape on crank torque, freely chosen pedal rate, and physiological responses during submaximal cycling. J Physiol Anthropol. 2009;28(6):261-7.

Hintzy F, Grappe F, Belli A. Effects of a non-circular chainring on sprint performance during a cycle ergometer test. J Sports Sci Med. 2016;15(2):228-33.

Hintzy F, Horvais N. Non-circular chainring improves aerobic cycling performance in non-cyclists. Eur J Sport Science. 2016;16(4):427-32.

Mateo-March M, Zabala M, González-Badillo J. Effects of the orientation of the maximum torque point with a Q-Ring™ non-circular chainring system on the BMX cycling sprint performance. Science & Sports. 2012;27(3):e15-e9.

Neptune R, Herzog W. Adaptation of muscle coordination to altered task mechanics during steady-state cycling. J Biomech. 2000;33(2):165-72.

Rankin JW, Neptune RR. A theoretical analysis of an optimal chainring shape to maximize crank power during isokinetic pedaling. J Biomech. 2008;41(7):1494-502.

Strutzenberger G, Wunsch T, Kroell J, Dastl J, Schwameder H. Effect of chainring ovality on joint power during cycling at different workloads and cadences. Sports Biomech. 2014;13(2):97-108.

Strutzenberger G, Wunsch T, Kröll J, Schwameder H, editors. Pedal forces, fower limb joint kinematics and kinetics in cycling with circular and non-circular chainrings. ISBS-Conference Proceedings Archive; 2012.

Malfait L, Storme G, Derdeyn M. Comparative biomechanical study of circular and non-circular chainrings for endurance cycling at constant speed. Zwevegem (Belgium - Europe)2006. p. 49.

Rankin JW, Neptune RR. A theoretical analysis of an optimal chainring shape to maximize crank power during isokinetic pedaling. J Biomech. 2008;41(7):1494-502.

Cordova A, Latasa I, Seco J, Villa G, Rodriguez-Falces J. Physiological responses during cycling with oval chainrings (Q-Ring) and circular chainrings. J Sports Sci Med. 2014;13(2):6.

Cullen L, Andrew K, Lair K, Widger M, Timson B. Efficiency of trained cyclists using circular and noncircular chainrings. Int J Sports Med. 1992;13(03):264-9.

Hull M, Williams M, Williams K, Kautz S. Physiological response to cycling with both circular and noncircular chainrings. Med Sci Sports Exercise. 1992;24(10):1114-22.

Peiffer JJ, Abbiss CR. The influence of elliptical chainrings on 10 km cycling time trial performance. Int J Sports Physiol. 2010;5(4):459-68.

Ratel S, Duché P, Hautier CA, Williams CA, Bedu M. Physiological responses during cycling with noncircular" Harmonic" and circular chainrings. Eur J Appl Physiol. 2004;91(1):100-4.

Zeller S, Abel T, Smith PM, Strueder HK. Influence of noncircular chainring on male physiological parameters in hand cycling. J Rehabil Res Dev. 2015;52(2):211-20.

Hansen EA, Jensen K, Hallén J, Rasmussen J, Pedersen PK. Effect of chain wheel shape on crank torque, freely chosen pedal rate, and physiological responses during submaximal cycling. J Physiol Anthropol. 2009;28(6):261-7.

Ratel S, Duché P, Hautier CA, Williams CA, Bedu M. Physiological responses during cycling with noncircular "Harmonic" and circular chainrings. Eur J Appl Physiol. 2004;91(1):100-4.

Peiffer JJ, Abbiss CR. The influence of elliptical chainrings on 10 km cycling time trial performance. Int J Sports Physiol Perform. 2010;5(4):459-68.

Carpes FP, Mota CB, Bini RR, Diefenthaeler F, Guimarães ACS, Nabinger E. Aplicação de força no pedal em prova de ciclismo 40 km contra-relógio simulada: estudo preliminar. Rev Bras de Educ Fís e Esporte. 2005;19(2):105-13.

Leong C-H, Elmer SJ, Martin JC. Noncircular Chainrings Do Not Influence Maximum Cycling Power. J Appl Biomech. 2017;33(6):410-8.

Corvino RB, Caputo F, Oliveira ACd, Greco CC, Denadai BS. Taxa de desenvolvimento de força em diferentes velocidades de contrações musculares. Rev Bras Med Esporte. 2009:428-31.

Komi PV. Força e Potência no Esporte. 2 ed. Porto Alegre2006. 536 p.

Lucía A, Hoyos J, Chicharro JL. Preferred pedalling cadence in professional cycling. Med Sci Sports Exerc. 2001;33(8):1361-6.

Santalla A, Manzano JM, Pérez M, Lucía A. A new pedaling design: the Rotor--effects on cycling performance. Med Sci Sports Exerc. 2002;34(11):1854-8.

Jobson SA, Hopker JG, Korff T, Passfield L. Gross efficiency and cycling performance: a brief review. J Sci Cycling. 2012;1(1): 3-8.

Coyle EF, Sidossis LS, Horowitz JF, Beltz JD. Cycling efficiency is related to the percentage of type I muscle fibers. Med Sci Sports Exerc. 1992;24(7):782-8.

Carpes FP, Dagnese F, Mota CB, Stefanyshyn DJ. Cycling with noncircular chainring system changes the three-dimensional kinematics of the lower limbs. Sports Biomech. 2009;8(4):275-83.

Neptune RR, Herzog W. Adaptation of muscle coordination to altered task mechanics during steady-state cycling. J Biomech. 2000;33(2):165-72.

García López J, Rodríguez-Marroyo J, Gerardo Villa J. Análisis del pedaleo ciclista con sistemas convencionales VS no circulares en pruebas submáximas y supramáximas. Órgano de la Sociedad Ibérica de Biomecánica y Biomateriales. 2008;14(2).

Jorge M, Hull M. Analysis of EMG measurements during bicycle pedalling. J Biomech. 1986;19(9):683-94.

Rodríguez-Marroyo JA, García-López J, Chamari K, Córdova A, Hue O, Villa JG. The rotor pedaling system improves anaerobic but not aerobic cycling performance in professional cyclists. Eur J Appl Physiol. 2009;106(1):87-94.

Herzog W, Guimaraes AC, Anton MG, Carter-Erdman KA. Moment-length relations of rectus femoris muscles of speed skaters/cyclists and runners. Med Sci Sports Exerc. 1991;23(11):1289-96.




DOI: https://doi.org/10.17648/aces.v7n1.3480

Apontamentos

  • Não há apontamentos.


 

 

Licença Creative Commons
Arquivos de Ciências do Esporte da Universidade Federal do Triângulo Mineiro está licenciado com uma Licença Creative Commons - Atribuição 4.0 Internacional.
Baseado no trabalho disponível em http://seer.uftm.edu.br/revistaeletronica/index.php/aces.
Podem estar disponíveis autorizações adicionais às concedidas no âmbito desta licença em http://seer.uftm.edu.br/revistaeletronica/index.php/aces.