TROPHIC STRUCTURE OF AQUATIC INVERTEBRATES IN AMAZON FOREST STREAMS USING STABLE ISOTOPES
DOI:
https://doi.org/10.18554/f5ghh844Palavras-chave:
ecosystems aquatic, isotopic analysis, trophic groupsResumo
The approach of stable isotopes has allowed to investigate the trophic structure in food webs and to determine the food source of the nutrient cycling pathways in terrestrial and aquatic ecosystems. Thus, the main objective of the present study was to investigate the trophic structure of macroinvertebrates in Amazonian streams. The research was carried out in 15 streams of the Alter do Chão Environmental Protection Area and surroundings, in Santarém-Pa city. A total of 3,150 individuals were collected, being 1,459 in the less rainy season and 1,691 in the rainy season, distributed in total in 65 taxa. The isotopic analysis was performed with 37 most representative taxa (57%), totaling 2,895 (92.57%) of the total number of individuals collected. We compared the isotopic analysis between the seasons (dry and rainy). In the less rainy season there were four trophic functional groups (herbivore, detritivore, omnivore and carnivore), while for the rainy season there were three groups (herbivore, detritivore, omnivore), with emphasis on the occurrence of herbivores in the rainy season. Most of the taxa collected showed a different isotopic signature between the two seasonal periods, changing the functional group, indicating food plasticity. The trophic classification currently used, based on studies in temperate areas, showed divergence largely with the results in the present work, based on stable isotopes. Trophic groups were related to abiotic variables such as temperature, dissolved oxygen, these variables being important for structuring the macroinvertebrate community, perhaps more important than the food source.
Key words: ecosystems aquatic, isotopic analysis, trophic groups.
Referências
1. Winemiller KO, Zeug SC, Robertson CR, Winemiller BK, Honeycutt, RL. Food-web structure of coastal streams in Costa Rica revealed by dietary and stable isotope analyses. Journal of Tropical Ecology. 2011; 27: 463–476. https://doi.org/10.1017/S0266467411000277.
2. Vannote RL, Minshall GH, Cummins KW, Sedell JR, Gushing CE. The river continuum concept. Canadian Journal Fisheries Aquatic Sciences. 1980; 37(1): 130-137. https://doi.org/10.1139/f80-017.
3. Couceiro SRM, Hamada N, Forsberg BR, Pimentel TP, Luz SLBA. Macroinvertebrate multimetric index to evaluate the biological condition of streams in the Central Amazon region of Brazil. Ecological Indicators. 2012; 18: 118-125. https://doi.org/10.1016/j.ecolind.2011.11.001.
4. Shabani IE, Liu MH, Yu HX, Muhigwa JBB, Geng FF. Benthic macroinvertebrate diversity and functional feeding groups in relation to physicochemical factors in Sanjiang Plain wetlands, Northeast China. Applied Ecology and Environmental Research. 2019; 17(2): 3387-3402. https://doi.org/10.15666/aeer/1705_1177311788.
5. Cummins KW, Wilzbach M, Kolouch B, Merritt R. Estimating Macroinvertebrate Biomass for Stream Ecosystem Assessments. International Journal of Environmental Research and Public Health. 2022; 19(6):3240. https://doi.org/10.3390/ijerph19063240.
6. Merritt RM, Cummnins KW, Berg MB. 2008. An Introduction to the Aquatic Invertebrates of North America. United States. Dubuque, Kendall Hunt; 2008.
7. Cummins KW. 2016. Combining taxonomy and function in the study of stream macroinvertebrates. Journal of Limnology. 2016; 75: 235-241. https://doi.org/10.4081/jlimnol.2016.1373.
8. Merritt RW, Cummins KW. An introduction to the aquatic insects of North America. Third Edition.United States of America. Kendall / Hunt Publishing Company; 1996.
9. Cummins KW, Merritt RW, Andrade PCN. The use of invertebrate functional groups to characterize ecosystem attributes in selected streams and rivers in southeast Brazil. Studies on Neotropical Fauna and Environment. 2005; 40: 71-90. https://doi.org/10.1080/01650520400025720.
10. Tomanova S, Goitia E, Helesic J. 2006. Trophic levels and functional feeding groups of macroinvertebrates in neotropical streams. Hydrobiologia. 2006; 556: 251-264. https://doi.org/10.1007/s10750-005-1255-5.
11. Hilsenhoff WL. Aquatic orders of insects. In: Thorp, J. H.; Covich, A. P. eds. Ecology and classification of North American freshwater invertebrates. San Diego, Academic Press; 2001, 664 – 680.
12. Tierno de Figueroa JM, López-Rodríguez MJ, Villar-Argaiz M. Spatial and seasonal variability in the trophic role of aquatic insects: An assessment of functional feeding group applicability. Freshw Biol. 2019; 64: 954–966. https://doi.org/10.1111/fwb.13277.
13. Tamaris-Turizo CE, Pinilla-A GA, Guzmán-Soto CJ, Granados-Martínez CE. Assigning functional feeding groups to aquatic arthropods in a Neotropical mountain river. Aquat Biol. 2020; 29:45-57. https://doi.org/10.3354/ab00724.
14. Nakagawa H. Diel and seasonal changes in gut contents of omnivorous–carnivorous macroinvertebrates in the Yura River, Japan. Ecological Research. 2022; 38(2), 347–359. https://doi.org/10.1111/1440-1703.12372.
15. Biasi C, Cogo GB, Hepp LU, Santos S. Grass species as a source of allochthonous energy for shredders and fungal decomposers in a subtropical stream. Fundamental and Applied Limnology. 2019; 192: 331-341.
16. Entrekin SA, Rosi EJ, Tank JL, Hoellein TJ, Lamberti GA. Quantitative food webs indicate modest increases in the transfer of allochthonous and autochthonous C to macroinvertebrates following a large wood addition to a temperate headwater stream. Frontiers in Ecology and Evolution. 2020; 8:114. https://doi.org/10.3389/fevo.2020.00114.
17. Labed-Veydert T, Bec A, Perrière F, Desvilettes C. Utilization of basal resources in a forested headwater stream: a combined stable isotope and fatty acid approach. Aquatic Sciences. 2023; 85 (13). https://doi.org/10.1007/s00027-022-00906-y.
18. Fry B. Food web structure on Georges Bank from stable C, N, and S isotopic compositions. Limnology and Oceanography. 1999; 33 (5): 1182-1190. https://doi.org/10.4319/lo.1988.33.5.1182.
19. Carvalho MC. Uso dos isótopos estáveis de carbono, nitrogênio e enxofre em estudos de ecologia costeira. Oecologia Brasiliensis. 2008 12 (4): 694-705. https://doi.org/ 10.4257/oeco.2008.1204.08.
20. Deniro MJ, Epstein S. Influence of the diet on the distribution of carbon isotopes in animals. Geochimica et Cosmochimica Acta. 1978; 42: 495-506. https://doi.org/10.1016/0016-7037(78)90199-0.
21. Deniro MJ, Epstein S. Influence of diet on the distribution of nitrogen isotopes in animals. Geochimica et Cosmochimica Acta. 1981; 45: 341-351. https://doi.org/10.1016/0016-7037(81)90244-1.
22. Alvares CA, Stape JL, Sentelhas PC, Gonçalves JL de M, Sparovek G. Köppen's climate classification map for Brazil. Meteorologische Zeitschrift. 2013; 22(6): 711-728. https://doi.org/10.1127/0941-2948/2013/0507.
23. Tanaka LMS, P. Satyamurty P, Machado, LAT. Diurnal variation of precipitation in central Amazon Basin. International Journal Climatology. 2014. https://doi.org/ 10.1002/joc.3929.
24. Magnusson WE, Lima AP, Albernaz AL, Sanaiotti TM, Guillaumet JL. Composição florística e cobertura vegetal das savanas na região de Alter do Chão, Santarém – PA. Brazilian Journal of Botany. 2008; 31(1): 165-177. https://doi.org/10.1590/S0100-84042008000100015.
25. Hamada N, Nessimian JL, Querino RB. Insetos Aquáticos na Amazônia brasileira: Taxonomia, biologia e ecologia. 1. ed. Manaus: Editora do INPA; 2014.
26. Ometto JPHB, Martinelli LA, Camargo PB, Moreira MZ. Uso de isótopos estáveis em estudos ambientais. In: Roland, F.; César, D.; Marinho, M. (Org.). Lições de Limnologia. São Carlos: RIMA; 2005, p. 461-485.
27. Vander-Zanden MJ, Fetzer WW. Global patterns of aquatic food chain length. Oikos. 2007; 116: 1378 – 1388. https://doi.org/10.1111/j.0030-1299.2007.16036.x.
28. Anderson C, Cabana, G. Estimating the trophic position of aquatic consumers in river food webs using stable nitrogen isotopes. 2007. Journal of the North American Benthological Society, 26: 273-285. https://doi.org/10.1899/0887-3593(2007)26[273:ETTPOA]2.0.CO;2.
29. Mccutchan JH, Lewis WM, Kendall C, Mcgrath CC. Variation in trophic shit for stable isotope ratios of carbon, nitrogen, and sulfur. Oikos, Copenhagen. 2003; 102: 378-390. https://doi.org/10.1034/j.1600-0706.2003.12098.x.
30. Winemiller KO, Kin SA. Seasonal Variation in Food Web Composition and Structure in a Temperate Tidal Estuary. Estuaries and Coasts. 2006; 29 (4): 552-567.
31. Hammer O, Harper DAT, Ryan PD. PAST: Palaeontological Statistics software package for education and data analysis. Palaeontologia Electronica. 2001; 4(1): 1-9.
32. Manetta GL, Benedito-Cecílio E, Martinelli LA. Carbon sources and Trophic position of the main species of fishes of Baía River, Paraná River Floodplain, Brazil. Brazilian Journal of Biology. 2003; 63(2): 283-290. https://doi.org/10.1590/S1519-69842003000200013.
33. Neiss UG, Hamada N. Ordem Odonata. In Insetos aquáticos na Amazônia brasileira: taxonomia, biologia e ecologia (Hamada, N.; Nessimian, J.L.; R. B. Querino, R. B. eds) Editora do INPA, Manaus; 2014, p. 217–282.
34. Carvalho EMC, Uieda VS. Colonização por macroinvertebrados bentônicos em substrato artificial e natural em um riacho da serra de Itatinga, São Paulo, Brasil. Revista Brasileira de Biologia. 2004; 21(2): 287-293.
35. Tamaris-Turizo CE, Pinilla-A GA, Muñoz, I. Trophic network of aquatic macroinvertebrates along an altitudinal gradient in a neotropical mountain river. Revista Brasileira de Entomologia. 2018; 62: 180-187. https://doi.org/10.1016/j.rbe.2018.07.003.
36. Motta RL, Uieda VS. Diet and trophic groups of an aquatic insect community in a tropical stream. Brazilian Journal of Biology. 2004; 64(4): 809-817. https://doi.org/10.1590/S1519-69842004000500010.