ATUALIZAÇÕES NO DESENVOLVIMENTO DA BIOIMPRESSÃO 3D A PARTIR DE ESTRUTURAS DESCELULARIZADAS: UMA REVISÃO NARRATIVA
DOI:
https://doi.org/10.18554/gnzx6m36Keywords:
Regenerative Medicine, 3D Bioprinting, Tissue Engineering, DecellularizationAbstract
A medicina regenerativa avançou significativamente nas últimas duas décadas, com a engenharia de tecidos desempenhando um papel fundamental na expansão das possibilidades de aplicação e na resolução de desafios médicos. A descelularização de tecidos e órgãos acelerou os esforços em bioengenharia, aprimorando as estratégias de reparo para diversos tipos de lesões. A adaptabilidade dessa técnica permitiu sua aplicação em múltiplos tipos de tecidos, sendo que alguns métodos demonstraram maior eficiência e potencial para integração clínica. Este estudo tem como objetivo documentar os ajustes nas técnicas de descelularização, principais avanços e aplicações no reparo de tecidos e órgãos. Utilizando uma abordagem retrospectiva e descritiva, esta revisão narrativa aborda tanto os aspectos gerais quanto específicos da descelularização. Os principais tópicos incluem os princípios básicos, as técnicas primárias, os avanços, as aplicações e as perspectivas futuras dos métodos de descelularização. Espera-se que esta revisão solidifique as principais evidências que sustentam as estratégias de reparo de órgãos e tecidos por meio da descelularização e forneça insights ou gere perguntas para novas pesquisas, contribuindo para a melhoria da qualidade de vida através de estudos primários mais direcionados.
References
Yang, H., Sun, L., Pang, Y., Hu, D., Xu, H., Mao, S., Peng, W., Wang, Y., Xu, Y., Zheng, Y. C., Du, S., Zhao, H., Chi, T., Lu, X., Sang, X., Zhong, S., Wang, X., Zhang, H., Huang, P., Sun, W., Mao, Y. Three-dimensional bioprinted hepatorganoids prolong survival of mice with liver failure. Gut. 2021;70(3):567–574. https://doi.org/10.1136/gutjnl-2019-319960
Breathwaite, E. K., Weaver, J. R., Murchison, A. C., Treadwell, M. L., Odanga, J. J., & Lee, J. B. Scaffold-free bioprinted osteogenic and chondrogenic systems to model osteochondral physiology. Biomedical Materials (Bristol, England). 2019;14(6):065010. https://doi.org/10.1088/1748-605X/ab4243
Tasoglu, S., & Demirci, U. Bioprinting for stem cell research. Trends in Biotechnology. 2013;31(1):10–19. https://doi.org/10.1016/j.tibtech.2012.10.005
Premaratne, I. D., Toyoda, Y., Celie, K. B., Brown, K. A., & Spector, J. A. Tissue Engineering Models for the Study of Breast Neoplastic Disease and the Tumor Microenvironment. Tissue Engineering Part B, Reviews. 2020;26(5):423–442. https://doi.org/10.1089/ten.TEB.2019.0347
Potjewyd, G., Moxon, S., Wang, T., Domingos, M., & Hooper, N. M. Tissue Engineering 3D Neurovascular Units: A Biomaterials and Bioprinting Perspective. Trends in Biotechnology. 2018;36(4):457–472. https://doi.org/10.1016/j.tibtech.2018.01.003
Shen, J., Ji, Y., Xie, M., Zhao, H., Xuan, W., Yin, L., Yu, X., Xu, F., Su, S., Nie, J., Xie, Y., Gao, Q., Ma, H., Ke, X., Shi, Z., Fu, J., Liu, Z., He, Y., Xiang, M. Cell-modified bioprinted microspheres for vascular regeneration. Materials Science & Engineering C, Materials for Biological Applications. 2020;112:110896. https://doi.org/10.1016/j.msec.2020.110896
Phang, S. J., Arumugam, B., Kuppusamy, U. R., Fauzi, M. B., Looi, M. L. A review of diabetic wound models-Novel insights into diabetic foot ulcer. Journal of Tissue Engineering and Regenerative Medicine. 2021;15(12):1051–1068. https://doi.org/10.1002/term.3246
Phang, S. J., Arumugam, B., Kuppusamy, U. R., Fauzi, M. B., Looi, M. L. A review of diabetic wound models-Novel insights into diabetic foot ulcer. Journal of Tissue Engineering and Regenerative Medicine. 2021;15(12):1051–1068. https://doi.org/10.1002/term.3246
Sharma, P., Wang, X., Ming, C., Vettori, L., Figtree, G., Boyle, A., Gentile, C. Considerations for the Bioengineering of Advanced Cardiac In Vitro Models of Myocardial Infarction. Small (Weinheim an der Bergstrasse, Germany). 2021;17(15). https://doi.org/10.1002/smll.202003765
Roche, C. D., Gentile, C. Transplantation of a 3D Bioprinted Patch in a Murine Model of Myocardial Infarction. Journal of Visualized Experiments (JoVE). 2020;(163):10.3791/61675. https://doi.org/10.3791/61675
Castillo-Henríquez, L., Castro-Alpízar, J., Lopretti-Correa, M., Vega-Baudrit, J. Exploration of Bioengineered Scaffolds Composed of Thermo-Responsive Polymers for Drug Delivery in Wound Healing. International Journal of Molecular Sciences. 2021;22(3):1408. https://doi.org/10.3390/ijms22031408
Osafune K. Regenerative treatments for kidney diseases: The closest and fastest strategies to solving related medical and economic problems. Artificial Organs. 2021;45(5):447–453. https://doi.org/10.1111/aor.13943
Kérourédan, O., Ribot, E. J., Fricain, J. C., Devillard, R., Miraux, S. Magnetic Resonance Imaging for tracking cellular patterns obtained by Laser-Assisted Bioprinting. Scientific Reports. 2018;8(1):15777. https://doi.org/10.1038/s41598-018-34226-9
Marimuthu, T., Kumar, P., Choonara, Y. E. Visible light-curable water-soluble chitosan derivative, chitosan hydrogel, and preparation method: a patent evaluation of US2019202998A1. Expert Opinion on Therapeutic Patents. 2021;31(5):351–360. https://doi.org/10.1080/13543776.2021.1903433
McBeth, C., Lauer, J., Ottersbach, M., Campbell, J., Sharon, A., Sauer-Budge, A. F. 3D bioprinting of GelMA scaffolds triggers mineral deposition by primary human osteoblasts. Biofabrication. 2017;9(1):015009. https://doi.org/10.1088/1758-5090/aa53bd
Liu, B., Li, J., Lei, X., Cheng, P., Song, Y., Gao, Y., Hu, J., Wang, C., Zhang, S., Li, D., Wu, H., Sang, H., Bi, L., Pei, G. 3D-bioprinted functional and biomimetic hydrogel scaffolds incorporated with nanosilicates to promote bone healing in rat calvarial defect model. Materials Science & Engineering C, Materials for Biological Applications. 2020;112:110905. https://doi.org/10.1016/j.msec.2020.110905
Kuo, C. Y., Wilson, E., Fuson, A., Gandhi, N., Monfaredi, R., Jenkins, A., Romero, M., Santoro, M., Fisher, J. P., Cleary, K., Reilly, B. Repair of Tympanic Membrane Perforations with Customized Bioprinted Ear Grafts Using Chinchilla Models. Tissue Engineering Part A. 2018;24(5-6):527–535. https://doi.org/10.1089/ten.TEA.2017.0246
Wang, M. M., Flores, R. L., Witek, L., Torroni, A., Ibrahim, A., Wang, Z., Liss, H. A., Cronstein, B. N., Lopez, C. D., Maliha, S. G., Coelho, P. G. Dipyridamole-loaded 3D-printed bioceramic scaffolds stimulate pediatric bone regeneration in vivo without disruption of craniofacial growth through facial maturity. Scientific Reports. 2019;9(1):18439. https://doi.org/10.1038/s41598-019-54726-6
Lin, X., Chen, J., Qiu, P., Zhang, Q., Wang, S., Su, M., et al. Biphasic Hierarchical Extracellular Matrix Scaffold for Osteochondral Defect Regeneration. Osteoarthritis and Cartilage. 2018;26:433–444. https://doi.org/10.1016/j.joca.2017.12.00
Dai, W., Sun, M., Leng, X., Hu, X., Ao, Y. Recent Progress in 3D Printing of Elastic and High-Strength Hydrogels for the Treatment of Osteochondral and Cartilage Diseases. Frontiers in Bioengineering and Biotechnology. 2020;8:604814. https://doi.org/10.3389/fbioe.2020.604814
Marques, C. F., Diogo, G. S., Pina, S., Oliveira, J. M., Silva, T. H., Reis, R. L. Collagen-based Bioinks for Hard Tissue Engineering Applications: a Comprehensive Review. Journal of Materials Science: Materials in Medicine. 2019;30:32. https://doi.org/10.1007/s10856-019-6234-x
Nulty, J., Burdis, R., Kelly, D. J. Biofabrication of Prevascularised Hypertrophic Cartilage Microtissues for Bone Tissue Engineering. Frontiers in Bioengineering and Biotechnology. 2021;9:661989. https://doi.org/10.3389/fbioe.2021.661989
Shavandi, A., Silva, T. H., Bekhit, A. A., Bekhit, A. E.-D. A. Keratin: Dissolution, Extraction and Biomedical Application. Biomaterials Science. 2017;5:1699–1735. https://doi.org/10.1039/c7bm00411g
Echave, M. C., Hernáez-Moya, R., Iturriaga, L., Pedraz, J. L., Lakshminarayanan, R., Dolatshahi-Pirouz, A., et al. Recent Advances in Gelatin-Based Therapeutics. Expert Opinion on Biological Therapy. 2019;19:773–779. https://doi.org/10.1080/14712598.2019.1610383
Shoueir, K. R., El-Desouky, N., Rashad, M. M., Ahmed, M. K., Janowska, I., El-Kemary, M. Chitosan Based-Nanoparticles and Nanocapsules: Overview, Physicochemical Features, Applications of a Nanofibrous Scaffold, and Bioprinting. International Journal of Biological Macromolecules. 2021;167:1176–1197. https://doi.org/10.1016/j.ijbiomac.2020.11.072
Critchley, S., Sheehy, E. J., Cunniffe, G., Diaz-Payno, P., Carroll, S. F., Jeon, O., et al. 3D Printing of Fibre-Reinforced Cartilaginous Templates for the Regeneration of Osteochondral Defects. Acta Biomaterialia. 2020;113:130–143. https://doi.org/10.1016/j.actbio.2020.05.040
Natarajan, A. B. M., Sivadas, V. P. D., Nair, P. D. P. D. 3D-printed Biphasic Scaffolds for the Simultaneous Regeneration of Osteochondral Tissues. Biomedical Materials. 2021;16:054102. https://doi.org/10.1088/1748-605X/ac14cb
Hong, N., Yang, G. H., Lee, J., Kim, G. 3D bioprinting and its in vivo applications. Journal of Biomedical Materials Research Part B: Applied Biomaterials. 2018;106(1):444–459. https://doi.org/10.1002/jbm.b.33826
Ong, C. S., Yesantharao, P., Huang, C. Y., Mattson, G., Boktor, J., Fukunishi, T., Zhang, H., Hibino, N. 3D bioprinting using stem cells. Pediatric Research. 2018;83(1-2):223–231. https://doi.org/10.1038/pr.2017.252
Lee, S. J., Lee, J. H., Park, J., Kim, W. D., Park, S. A. Fabrication of 3D Printing Scaffold with Porcine Skin Decellularized Bio-Ink for Soft Tissue Engineering. Materials (Basel). 2020;13(16):3522. https://doi.org/10.3390/ma13163522
Shi, L., Hu, Y., Ullah, M. W., Ullah, I., Ou, H., Zhang, W., Xiong, L., Zhang, X. Cryogenic free-form extrusion bioprinting of decellularized small intestinal submucosa for potential applications in skin tissue engineering. Biofabrication. 2019;11(3):035023. https://doi.org/10.1088/1758-5090/ab15a9
Hsieh, D. J., Srinivasan, P., Yen, K. C., Yeh, Y. C., Chen, Y. J., Wang, H. C., Tarng, Y. W. Protocols for the preparation and characterization of decellularized tissue and organ scaffolds for tissue engineering. Biotechniques. 2021;70(2):107–115. https://doi.org/10.2144/btn-2020-0141
De Santis, M. M., Alsafadi, H. N., Tas, S., Bölükbas, D. A., Prithiviraj, S., Da Silva, I. A. N., Mittendorfer, M., et al. Extracellular-Matrix-Reinforced Bioinks for 3D Bioprinting Human Tissue. Advanced Materials. 2021;33(3). https://doi.org/10.1002/adma.202005476
Isaeva, E. V., Beketov, E. E., Demyashkin, G. A., et al. Cartilage Formation In Vivo Using High Concentration Collagen-Based Bioink with MSC and Decellularized ECM Granules. International Journal of Molecular Sciences. 2022;23(5):2703. https://doi.org/10.3390/ijms23052703
Kiani, M., Movahedin, M., Halvaei, I., Soleimani, M. Formation of organoid-like structures in the decellularized rat testis. Iranian Journal of Basic Medical Sciences. 2021;24(11):1523–1528. https://doi.org/10.22038/IJBMS.2021.58294.12948
Cai, A., Zheng, Z., Müller-Seubert, W., Biggemann, J., Fey, T., Beier, J. P., Horch, R. E., Frieß, B., Arkudas, A. Microsurgical Transplantation of Pedicled Muscles in an Isolation Chamber—A Novel Approach to Engineering Muscle Constructs via Perfusion-Decellularization. Journal of Personalized Medicine. 2022;12(3):442. https://doi.org/10.3390/jpm12030442
Polisetti, N., Schmid, A., Schlötzer-Schrehardt, U., Maier, P., Lang, S. J., Steinberg, T., Schlunck, G., Reinhard, T. A decellularized human corneal scaffold for anterior corneal surface reconstruction. Scientific Reports. 2021;11(1):2992. https://doi.org/10.1038/s41598-021-82678-3