ATUALIZAÇÕES NO DESENVOLVIMENTO DA BIOIMPRESSÃO 3D A PARTIR DE ESTRUTURAS DESCELULARIZADAS: UMA REVISÃO NARRATIVA

Authors

  • Marcelo Costa Araújo
  • Maria Eduarda Arantes da Cunha
  • Camila Botelho Miguel
  • Giovana Figueiredo Maciel
  • Carlos Antônio Trindade da Silva
  • Carlo José Freire Oliveira
  • Siomar de Castro Soares
  • Wellington Rodrigues Universidade Federal do Triângulo Mineiro

DOI:

https://doi.org/10.18554/gnzx6m36

Keywords:

Regenerative Medicine, 3D Bioprinting, Tissue Engineering, Decellularization

Abstract

A medicina regenerativa avançou significativamente nas últimas duas décadas, com a engenharia de tecidos desempenhando um papel fundamental na expansão das possibilidades de aplicação e na resolução de desafios médicos. A descelularização de tecidos e órgãos acelerou os esforços em bioengenharia, aprimorando as estratégias de reparo para diversos tipos de lesões. A adaptabilidade dessa técnica permitiu sua aplicação em múltiplos tipos de tecidos, sendo que alguns métodos demonstraram maior eficiência e potencial para integração clínica. Este estudo tem como objetivo documentar os ajustes nas técnicas de descelularização, principais avanços e aplicações no reparo de tecidos e órgãos. Utilizando uma abordagem retrospectiva e descritiva, esta revisão narrativa aborda tanto os aspectos gerais quanto específicos da descelularização. Os principais tópicos incluem os princípios básicos, as técnicas primárias, os avanços, as aplicações e as perspectivas futuras dos métodos de descelularização. Espera-se que esta revisão solidifique as principais evidências que sustentam as estratégias de reparo de órgãos e tecidos por meio da descelularização e forneça insights ou gere perguntas para novas pesquisas, contribuindo para a melhoria da qualidade de vida através de estudos primários mais direcionados.

References

Yang, H., Sun, L., Pang, Y., Hu, D., Xu, H., Mao, S., Peng, W., Wang, Y., Xu, Y., Zheng, Y. C., Du, S., Zhao, H., Chi, T., Lu, X., Sang, X., Zhong, S., Wang, X., Zhang, H., Huang, P., Sun, W., Mao, Y. Three-dimensional bioprinted hepatorganoids prolong survival of mice with liver failure. Gut. 2021;70(3):567–574. https://doi.org/10.1136/gutjnl-2019-319960

Breathwaite, E. K., Weaver, J. R., Murchison, A. C., Treadwell, M. L., Odanga, J. J., & Lee, J. B. Scaffold-free bioprinted osteogenic and chondrogenic systems to model osteochondral physiology. Biomedical Materials (Bristol, England). 2019;14(6):065010. https://doi.org/10.1088/1748-605X/ab4243

Tasoglu, S., & Demirci, U. Bioprinting for stem cell research. Trends in Biotechnology. 2013;31(1):10–19. https://doi.org/10.1016/j.tibtech.2012.10.005

Premaratne, I. D., Toyoda, Y., Celie, K. B., Brown, K. A., & Spector, J. A. Tissue Engineering Models for the Study of Breast Neoplastic Disease and the Tumor Microenvironment. Tissue Engineering Part B, Reviews. 2020;26(5):423–442. https://doi.org/10.1089/ten.TEB.2019.0347

Potjewyd, G., Moxon, S., Wang, T., Domingos, M., & Hooper, N. M. Tissue Engineering 3D Neurovascular Units: A Biomaterials and Bioprinting Perspective. Trends in Biotechnology. 2018;36(4):457–472. https://doi.org/10.1016/j.tibtech.2018.01.003

Shen, J., Ji, Y., Xie, M., Zhao, H., Xuan, W., Yin, L., Yu, X., Xu, F., Su, S., Nie, J., Xie, Y., Gao, Q., Ma, H., Ke, X., Shi, Z., Fu, J., Liu, Z., He, Y., Xiang, M. Cell-modified bioprinted microspheres for vascular regeneration. Materials Science & Engineering C, Materials for Biological Applications. 2020;112:110896. https://doi.org/10.1016/j.msec.2020.110896

Phang, S. J., Arumugam, B., Kuppusamy, U. R., Fauzi, M. B., Looi, M. L. A review of diabetic wound models-Novel insights into diabetic foot ulcer. Journal of Tissue Engineering and Regenerative Medicine. 2021;15(12):1051–1068. https://doi.org/10.1002/term.3246

Phang, S. J., Arumugam, B., Kuppusamy, U. R., Fauzi, M. B., Looi, M. L. A review of diabetic wound models-Novel insights into diabetic foot ulcer. Journal of Tissue Engineering and Regenerative Medicine. 2021;15(12):1051–1068. https://doi.org/10.1002/term.3246

Sharma, P., Wang, X., Ming, C., Vettori, L., Figtree, G., Boyle, A., Gentile, C. Considerations for the Bioengineering of Advanced Cardiac In Vitro Models of Myocardial Infarction. Small (Weinheim an der Bergstrasse, Germany). 2021;17(15). https://doi.org/10.1002/smll.202003765

Roche, C. D., Gentile, C. Transplantation of a 3D Bioprinted Patch in a Murine Model of Myocardial Infarction. Journal of Visualized Experiments (JoVE). 2020;(163):10.3791/61675. https://doi.org/10.3791/61675

Castillo-Henríquez, L., Castro-Alpízar, J., Lopretti-Correa, M., Vega-Baudrit, J. Exploration of Bioengineered Scaffolds Composed of Thermo-Responsive Polymers for Drug Delivery in Wound Healing. International Journal of Molecular Sciences. 2021;22(3):1408. https://doi.org/10.3390/ijms22031408

Osafune K. Regenerative treatments for kidney diseases: The closest and fastest strategies to solving related medical and economic problems. Artificial Organs. 2021;45(5):447–453. https://doi.org/10.1111/aor.13943

Kérourédan, O., Ribot, E. J., Fricain, J. C., Devillard, R., Miraux, S. Magnetic Resonance Imaging for tracking cellular patterns obtained by Laser-Assisted Bioprinting. Scientific Reports. 2018;8(1):15777. https://doi.org/10.1038/s41598-018-34226-9

Marimuthu, T., Kumar, P., Choonara, Y. E. Visible light-curable water-soluble chitosan derivative, chitosan hydrogel, and preparation method: a patent evaluation of US2019202998A1. Expert Opinion on Therapeutic Patents. 2021;31(5):351–360. https://doi.org/10.1080/13543776.2021.1903433

McBeth, C., Lauer, J., Ottersbach, M., Campbell, J., Sharon, A., Sauer-Budge, A. F. 3D bioprinting of GelMA scaffolds triggers mineral deposition by primary human osteoblasts. Biofabrication. 2017;9(1):015009. https://doi.org/10.1088/1758-5090/aa53bd

Liu, B., Li, J., Lei, X., Cheng, P., Song, Y., Gao, Y., Hu, J., Wang, C., Zhang, S., Li, D., Wu, H., Sang, H., Bi, L., Pei, G. 3D-bioprinted functional and biomimetic hydrogel scaffolds incorporated with nanosilicates to promote bone healing in rat calvarial defect model. Materials Science & Engineering C, Materials for Biological Applications. 2020;112:110905. https://doi.org/10.1016/j.msec.2020.110905

Kuo, C. Y., Wilson, E., Fuson, A., Gandhi, N., Monfaredi, R., Jenkins, A., Romero, M., Santoro, M., Fisher, J. P., Cleary, K., Reilly, B. Repair of Tympanic Membrane Perforations with Customized Bioprinted Ear Grafts Using Chinchilla Models. Tissue Engineering Part A. 2018;24(5-6):527–535. https://doi.org/10.1089/ten.TEA.2017.0246

Wang, M. M., Flores, R. L., Witek, L., Torroni, A., Ibrahim, A., Wang, Z., Liss, H. A., Cronstein, B. N., Lopez, C. D., Maliha, S. G., Coelho, P. G. Dipyridamole-loaded 3D-printed bioceramic scaffolds stimulate pediatric bone regeneration in vivo without disruption of craniofacial growth through facial maturity. Scientific Reports. 2019;9(1):18439. https://doi.org/10.1038/s41598-019-54726-6

Lin, X., Chen, J., Qiu, P., Zhang, Q., Wang, S., Su, M., et al. Biphasic Hierarchical Extracellular Matrix Scaffold for Osteochondral Defect Regeneration. Osteoarthritis and Cartilage. 2018;26:433–444. https://doi.org/10.1016/j.joca.2017.12.00

Dai, W., Sun, M., Leng, X., Hu, X., Ao, Y. Recent Progress in 3D Printing of Elastic and High-Strength Hydrogels for the Treatment of Osteochondral and Cartilage Diseases. Frontiers in Bioengineering and Biotechnology. 2020;8:604814. https://doi.org/10.3389/fbioe.2020.604814

Marques, C. F., Diogo, G. S., Pina, S., Oliveira, J. M., Silva, T. H., Reis, R. L. Collagen-based Bioinks for Hard Tissue Engineering Applications: a Comprehensive Review. Journal of Materials Science: Materials in Medicine. 2019;30:32. https://doi.org/10.1007/s10856-019-6234-x

Nulty, J., Burdis, R., Kelly, D. J. Biofabrication of Prevascularised Hypertrophic Cartilage Microtissues for Bone Tissue Engineering. Frontiers in Bioengineering and Biotechnology. 2021;9:661989. https://doi.org/10.3389/fbioe.2021.661989

Shavandi, A., Silva, T. H., Bekhit, A. A., Bekhit, A. E.-D. A. Keratin: Dissolution, Extraction and Biomedical Application. Biomaterials Science. 2017;5:1699–1735. https://doi.org/10.1039/c7bm00411g

Echave, M. C., Hernáez-Moya, R., Iturriaga, L., Pedraz, J. L., Lakshminarayanan, R., Dolatshahi-Pirouz, A., et al. Recent Advances in Gelatin-Based Therapeutics. Expert Opinion on Biological Therapy. 2019;19:773–779. https://doi.org/10.1080/14712598.2019.1610383

Shoueir, K. R., El-Desouky, N., Rashad, M. M., Ahmed, M. K., Janowska, I., El-Kemary, M. Chitosan Based-Nanoparticles and Nanocapsules: Overview, Physicochemical Features, Applications of a Nanofibrous Scaffold, and Bioprinting. International Journal of Biological Macromolecules. 2021;167:1176–1197. https://doi.org/10.1016/j.ijbiomac.2020.11.072

Critchley, S., Sheehy, E. J., Cunniffe, G., Diaz-Payno, P., Carroll, S. F., Jeon, O., et al. 3D Printing of Fibre-Reinforced Cartilaginous Templates for the Regeneration of Osteochondral Defects. Acta Biomaterialia. 2020;113:130–143. https://doi.org/10.1016/j.actbio.2020.05.040

Natarajan, A. B. M., Sivadas, V. P. D., Nair, P. D. P. D. 3D-printed Biphasic Scaffolds for the Simultaneous Regeneration of Osteochondral Tissues. Biomedical Materials. 2021;16:054102. https://doi.org/10.1088/1748-605X/ac14cb

Hong, N., Yang, G. H., Lee, J., Kim, G. 3D bioprinting and its in vivo applications. Journal of Biomedical Materials Research Part B: Applied Biomaterials. 2018;106(1):444–459. https://doi.org/10.1002/jbm.b.33826

Ong, C. S., Yesantharao, P., Huang, C. Y., Mattson, G., Boktor, J., Fukunishi, T., Zhang, H., Hibino, N. 3D bioprinting using stem cells. Pediatric Research. 2018;83(1-2):223–231. https://doi.org/10.1038/pr.2017.252

Lee, S. J., Lee, J. H., Park, J., Kim, W. D., Park, S. A. Fabrication of 3D Printing Scaffold with Porcine Skin Decellularized Bio-Ink for Soft Tissue Engineering. Materials (Basel). 2020;13(16):3522. https://doi.org/10.3390/ma13163522

Shi, L., Hu, Y., Ullah, M. W., Ullah, I., Ou, H., Zhang, W., Xiong, L., Zhang, X. Cryogenic free-form extrusion bioprinting of decellularized small intestinal submucosa for potential applications in skin tissue engineering. Biofabrication. 2019;11(3):035023. https://doi.org/10.1088/1758-5090/ab15a9

Hsieh, D. J., Srinivasan, P., Yen, K. C., Yeh, Y. C., Chen, Y. J., Wang, H. C., Tarng, Y. W. Protocols for the preparation and characterization of decellularized tissue and organ scaffolds for tissue engineering. Biotechniques. 2021;70(2):107–115. https://doi.org/10.2144/btn-2020-0141

De Santis, M. M., Alsafadi, H. N., Tas, S., Bölükbas, D. A., Prithiviraj, S., Da Silva, I. A. N., Mittendorfer, M., et al. Extracellular-Matrix-Reinforced Bioinks for 3D Bioprinting Human Tissue. Advanced Materials. 2021;33(3). https://doi.org/10.1002/adma.202005476

Isaeva, E. V., Beketov, E. E., Demyashkin, G. A., et al. Cartilage Formation In Vivo Using High Concentration Collagen-Based Bioink with MSC and Decellularized ECM Granules. International Journal of Molecular Sciences. 2022;23(5):2703. https://doi.org/10.3390/ijms23052703

Kiani, M., Movahedin, M., Halvaei, I., Soleimani, M. Formation of organoid-like structures in the decellularized rat testis. Iranian Journal of Basic Medical Sciences. 2021;24(11):1523–1528. https://doi.org/10.22038/IJBMS.2021.58294.12948

Cai, A., Zheng, Z., Müller-Seubert, W., Biggemann, J., Fey, T., Beier, J. P., Horch, R. E., Frieß, B., Arkudas, A. Microsurgical Transplantation of Pedicled Muscles in an Isolation Chamber—A Novel Approach to Engineering Muscle Constructs via Perfusion-Decellularization. Journal of Personalized Medicine. 2022;12(3):442. https://doi.org/10.3390/jpm12030442

Polisetti, N., Schmid, A., Schlötzer-Schrehardt, U., Maier, P., Lang, S. J., Steinberg, T., Schlunck, G., Reinhard, T. A decellularized human corneal scaffold for anterior corneal surface reconstruction. Scientific Reports. 2021;11(1):2992. https://doi.org/10.1038/s41598-021-82678-3

Downloads

Published

2025-06-05

Issue

Section

Revisão da Literatura

How to Cite

ATUALIZAÇÕES NO DESENVOLVIMENTO DA BIOIMPRESSÃO 3D A PARTIR DE ESTRUTURAS DESCELULARIZADAS: UMA REVISÃO NARRATIVA. Acta Biologica Brasiliensia, [S. l.], v. 8, n. 1, p. 40–65, 2025. DOI: 10.18554/gnzx6m36. Disponível em: https://seer.uftm.edu.br/revistaeletronica/index.php/acbioabras/article/view/8092. Acesso em: 5 dec. 2025.