PREDICTIVE AND PROGNOSTIC BIOMARKERS FOR PERSONALIZED MEDICINE OF COLORECTAL CANCER

Authors

  • Amanda Vilefort de Melo Instituto Metodista Izabela Hendrix
  • Rafaela Marcelle Pacheco Silva Instituto Metodista Izabela Hendrix
  • Letícia da Conceição Braga Instituto Metodista Izabela Hendrix
  • Warne Pedro Andrade Núcleo Hematologia e Oncologia

DOI:

https://doi.org/10.18554/acbiobras.v2i1.8654

Keywords:

Molecular markers, Predictive markers, prognostic markers, 5-FU, Colorectal cancer

Abstract

 Colorectal cancer (CRC) is the third cancer type in the world. In 2012, it was responsible for 694,000 deaths worldwide. Despite advances in the treatment of CRC, the mortality rate remains high. For this reason, molecular markers approaches could help personalized treatment and increase quality of life and life extension of patients. This study aimed to perform a metaanalysis of the molecular markers in CRC patients. Using english descriptors, linked to Boolean operators (AND / OR), 16 studies, published between 2008 and 2018, were selected from searches of PUBMED, COCHRANE LIBRARY and CLINICAL TRIALS. Our metaanalysis involved 9,114 patients with CRC identified six molecular markers [MMR deficiency (dMMR), TOPO2a+/EGFR-/TP170-, nuclear maspin and Nuclear Cyclin D1a protein expression and DPYD c.1129-5923 C> G / hapB3 variant] as predictive and 10 markers [TP53 mutant, KRAS mutant, expression of miR-326, protein VEGF-D, CatS, ERCC-1, SMAD 4 in MSI and Protein-1 monocyte chemotactic (MCP-1), BRAF V600E/KRAS mutant in tumors with MMR proficiency (pMMR), LGR5 and GUCY2C mRNA expression] as prognosis markers. VEGF-D expression (OR: 2.35 [1.80-3.08]) was the best predictive marker while GUCY2C gene expression was the best CRC prognosis marker (OR: 44.35 [28.75-68.42]). Despite the improvements in CRC treatment and patient outcome at last two decades, only KRAS were introduced clinically as a predictive marker of anti-EGFR therapy. Therefore, clinical validation of new biomarkers is necessary in order to stratify CRC patients at a higher resolution, allowing for optimized treatment. 

References

(1) Testa, U.; Castelli, G.; Pelosi, E. 2018. Lung Cancers: Molecular Characterization, Clonal Heterogeneity and Evolution, and Cancer Stem Cells. Cancers, 10 (8): 248.

(2) World Health Organization. 2018. Cancer. Disponível em <https://www.who.int/news-room/fact-sheets/detail/cancer>.

(3) BRASIL. 2018. Estimativas 2018: incidência do câncer no Brasil. Rio de Janeiro: INCA. Disponível em: <http://www1.inca.gov.br/estimativa/2018/introducao.asp>

(4) Mármol, I.; Sánchez-De-Diego, C.; Dieste, A.; Cerrada, E.; Yoldi, M. 2017. Colorectal Carcinoma: A General Overview and Future Perspectives in Colorectal Cancer. Int. J. Mol. Sci, 18 (1): 197.

(5) Sebio, A.; Kahn, M.; Lenz, H-J. 2014. The potential of targeting Wnt/b-catenin in colon cancer. Expert Opin. Ther. Targets, 18 (6), 611-615.

(6) Kuipers, E. J.; Grady, W. M.; Lieberman, D.; Seufferlein, T, Sung J. J.; Boelens, P. G.; Van De Velde C.J.; Watanabe T. 2015. Colorectal Cancer. Nat Rev Dis Primers, 1:15065. DOI: 10.1038/nrdp.2015.65.

(7) Abraha, A. M; Ketema, E. B. 2016. Apoptotic pathways as a therapeutic target for colorectal cancer treatment. World J Gastrointest Oncol. 8 (8): 583- 591.

(8) Brenner, H.; Chen, C. 2018. The colorectal cancer epidemic: challenges and opportunities for primary, secondary and tertiary prevention. British Journal of Cancer; 119, (7): 785-792. DOI: 10.1038/s41416-018-0264-x.

(9) Kalia, M. 2015. Biomarkers for personalized oncology: recent advances and future challenges. Metabolism clinical and experimental, 64 (3 Suppl 1): 16- 21. DOI: 10.1016/j.metabol.2014.10.027.

(10) Alex A. K.; Siqueira S.; Coudry R.; Santos J.; Alves M.; Hoff P. M.; Riechelmann R. P. 2016. Response to chemotherapy and prognosis in metastatic colorectal cancer with DNA deficient mismatch repair. Clinical Colorectal Cancer, 16 (3): 228-239. DOI: 10.1016/j.clcc.2016.11.001.

(11) Han, Y.; Lu, S.; Yu, F.; Liu, X.; Sun, H.; Wang, J.; Zhu, X.; Lu, H.; Yue, H.; Wang, J.; Lin, J.; Zhou, C.; Tang, H.; Peng, Z. 2016. A comparative analysis and guidance for individualized chemotherapy of stage II and III colorectal cancer patients based on pathological markers. Scientific Reports, 6: 37240. DOI: 10.1038 / srep37240

(12) Hestetun K. E., Brydøy H., Myklebust M. P., Dahl S. 2015. Nuclear maspin expression as a predictive marker for fluorouracil treatment response in colon câncer. Acta Oncologica, 54 (4): 470–479.

(13) Lee, A. M.; Alberts, S. R.; Sargent, D. J.; Sinicrope, F. A.; Berenberg, J. L.; Grothey, A. F.; Polite, B. N.; Chan, E. T.; Gill, S. F.; Kahlenberg, M. S.; Nair, S. G.; Shields, A. F.; Goldberg, R. M.; Diasio. R. B. 2016. Association between DPYD c.1129-5923 C>G/hapB3 and severe toxicity to 5-fluorouracil-based chemotherapy in stage III colon cancer patients: NCCTG N0147 (Alliance). Pharmacogenet Genomics, 26 (3): 133–137.

(14) Myklebust, M. P.; LI, Z.; Tran, T. H.; Rui, H.; Knudsen, E. S.; Elsaleh H.; Fluge, O.; Vonen, B.; Myrvold, H. E.; Leh, S.; Tveit, K. M.; Pestell, R. G.; Dahl, O. 2012. Expression of cyclin D1a and D1b as predictive factors for treatment response in colorectal câncer. British Journal of Cancer, 107 (10): 1684-1691.

(15) Tabernero, J.; Yoshino, T.; Cohn, A. L.; Obermannova, R.; Bodoky, G.; Garcia-Carbonero, R.; Ciuleanu, T. E.; Portnoy, D. C.; Van Cutsem, E.; Grothey, A.; Prausová, J.; Garcia-Alfonso, P.; Yamazaki, K.; Clingan, P. R.; Lonardi, S.; Kim, T. W.; Simms, L.; Chang, S. C.; Nasroulah, F. 2015. Ramucirumab versus placebo in combination with second-line FOLFIRI in patients with metastatic colorectal carcinoma that progressed during or after first-line therapy with bevacizumab, oxaliplatin, and a fluoropyrimidine (RAISE): a randomised, doubleblind, multicentre, phase 3 study. Lancet Oncol. 16 (5):499-508. DOI: 10.1016/S1470-2045(15)70127-0.

(16) Gormley, J. A.; Hegarty, S. M.; O'grady, A.; Stevenson, M. R.; Burden, R. E. Barrett, H. L.; Scott, C. J.; Johnston, J. A.; Wilson, R. H.; Kay, E. W.; Johnston, P. G.; Olwill, S. A. 2011. The role of Cathepsin S as a marker of prognosis and predictor of chemotherapy benefit in adjuvant CRC: a pilot study. British Journal of Cancer, 105 (10): 1487 – 1494.

(17) Kandolier, D.; Mittlböck, M.; Kappel, S.; Puhalla, H.; Herbst, F.; LANGNER, C.; Wolf, B.; Tschmelitsch, J.; Schiperser, W.; Steger, G.; Hofbauer, F.; Samonigg, H.; Gnant, M.; Teleky, B.; Kührer, I. 2015. TP53 Mutational Status and Prediction of Benefit from Adjuvant 5- Fluorouracil in Stage III Colon Cancer Patients. EBioMedicine, 2 (8): 825–830. DOI: 10.1016 / j.ebiom.2015.06.003

(18) Kjersem, J.B; Ikdahl, T.; Lingjaerde, O. C.; Guren, T.; Tveit, K. M.; Kure E. H. 2014. Plasma microRNAs predicting clinical outcome in metastatic colorectal cancer patients receiving first-line oxaliplatin based treatment. Molecular Oncology, 8 (1): 59-67. DOI: 10.1016/j.molonc.2013.09.001.

(19) Mejia, A.; Schulz, S.; Hyslop, T.; Weinberg, D. S.; Waldman, S. A. 2009. GUCY2C reverse transcriptase PCR to stage pN0 colorectal cancer patients. Expert Rev Mol Diagn, 9, (8): 777–785. DOI: 10.1586 / er.09.67

(20) Parekh, S.; Ziegenhain, C.; Vieth, B.; Enard, W.; Hellmann, I. 2016. The impact of amplification on differential expression analyses by RNA-seq. scientific Reports, 6: 25533. DOI: 10.1038/srep25533.

(21) Roth, A. D.; Delorenzi, H.; Tejpar, S.; Yan, P.; Klingbiel, D.; Fiocca, R.; D'ario, L.; Cisar, G.; Labianca, R.; Cunningham, D.; Nordlinger, B.; BOSMAN, F.; Van Cutsem, E. 2012. Integrated Analysis of Molecular and Clinical Prognostic Factors in Stage II/III Colon Cancer. J Natl Cancer Inst, 104 (21): 1635–1646. DOI: 10.1093 / jnci / djs427

(22) Sinicrope, F. A; Shi, Q.; Smyrk, T. C.; Thibodeau, S. N.; Dienstmann, R.; Guinney, J.; Bot, B. M.; Tejpar, S.; Delorenzi, M.; Goldberg, R. M.; Mahoney, M.; Sargent, D. J.; Alberts, S. R. 2015. Molecular Markers Identify Subtypes of Stage III Colon Cancer Associated with Patient Outcomes. Gastroenterology, 148 (1): 88–99. DOI: 10.1053 / j.gastro.2014.09.041.

(23) Smith, G.; Limite, R.; Wolf, H.; Steele, R. J.; Carey, F. A.; Wolf, C. R. 2010. Activating K-Ras mutations outwith ‘hotspot’ codons in sporadic colorectal tumours – implications for personalised cancer medicine. British Journal of Cancer, 102 (4): 693–703. DOI: 10.1038 / sj.bjc.6605534.

(24) Stanisavljević, L.; Myklebust, M. P.; Leh, S.; Dahl, O. 2016. LGR5 and CD133 as prognostic and predictive markers for fluoropyrimidine-based adjuvant chemotherapy in colorectal cancer. Acta oncologica, 55 (12): 1425-1433.

(25) Watanabe, H.; Miki, C.; Okugawa, Y.; Toiyama, Y.; Inoue, Y.; Kusunoki, M. 2008. Decreased Expression of Monocyte Chemoattractant Protein-1 Predicts Poor Prognosis Following Curative Resection of Colorectal Cancer. Diseases Colon Rectum, 51 (12): 1867-1870. DOI: 10.1007 / s10350-008-9380-7

(26) Zeinalian, M.; Hashemzadeh-Chaleshtori, M.; Salehi, R.; Emami, M. H. 2018. Clinical Aspects of Microsatellite Instability Testing in Colorectal Cancer. Adv Biomed Res, 7:28. DOI: 10.4103 / abr.abr_185_16

(27) Battaglin F.; Naseem, H.; Lenz, H. J.; Salem, M. E. 2018. Microsatellite instability in colorectal cancer: overview of its clinical significance and novel perspectives. Clin Adv Hematol Oncol, 16 (11): 735-745.

(28) Sargent, D. J,; Marsoni, S.; Monges, G.; Thibodeau, S. N.; Labianca, R.; Hamilton, S. R.; French, A. J.; Kabat, B.; Foster, N. R.; Torri, V.; Ribic, C.; Grothey, A.; Moore, M.; Zaniboni, A.; Seitz, J. F.; Sinicrope, F.; Gallinger, S. 2010. Defective mismatch repair as a predictive marker for lack of efficacy of fluorouracil-based adjuvant therapy in colon cancer. J Clin Oncol, 28, (20): 3219-26. DOI:10.1200/JCO.2009.27

(29) Diehl, J. A. 2002. Cycling to Cancer with Cyclin D1. Cancer Biology Therapy, 1 (3): 226-231.

(30) Li, Z.; Jiao, X.; Wang, C.; Shirley, L.A.; Elsaleh, H.; Dahl, O.; Wang, M.; Soutoglou, E.; Knudsen, E. S.; Pestell, R. G. 2010. Alternative cyclin D1 splice forms differentially regulate the DNA damage response. Cancer Res, 7, (2): 802–

8811. DOI: 10.1158 / 0008-5472.

(31) Berardi, R.; Morgese, F.; Onofri, A.; Mazzanti, P.; Pistelli, M.; Ballatore, Z.; Savini, A.; De Lisa, M.; Caramanti, M.; Rinaldi, S.; Pagliaretta, S.; Santoni, M.; Pierantoni, C.; Cascinu, S. 2013. Role of maspin in câncer. Clinical and Translational Medicine, 2 (1): 8. DOI: 10.1186/2001-1326-2-8.

(32) Bodenstine, T.M.; Seftor, R. E.; Khalkhali-ELLIS, Z.; Seftor, E. A.; Pemberton, P, A.; Hendrix, M. J. 2012. Maspin: Molecular mechanisms and therapeutic implications. Cancer Metastasis, 31 (3-4): 529 – 51. DOI: 10.1007 / s10555-012-9361-0

(33) Bergant, K.; Janezic, M.; Perdih, A. 2018. Bioassays and In Silico Methods in the Identification of Human DNA Topoisomerase IIα Inhibitors. Curr Med Chem, 25 (28): 3286-3318.

(34) Järvinen, T.A.; Liu, E. T. 2003. HER-2/neu and Topoisomerase IIα – Simultaneous Drug Targets in Cancer. Combinatorial Chemistry High throughput Screening, 6 (5): 455-70. DOI: 10.2174 / 0929867325666180306165725

(35) Järvinen, T. A. H.; Tanner, M.; Rantanen, V.; Bärlund, M.; Borg, A.; Grénman, S.; Isola, J. 2000. Amplification and Deletion of Topoisomerase Iiα Associate with ErbB-2 Amplification and Affect Sensitivity to Topoisomerase II Inhibitor Doxorubicin in Breast Cancer. Am. J. Pathol., 156 (3): 839-847.

(36) Yarden, Y. 2001. The EGFR family and its ligands in human cancer: signaling mechanisms and therapeutic opportunities. European Journal of Cancer, 37 (4): 3-8

(37) De Luca, A.; Carotenuto, U. M.; Rachiglio, U. M.; Gallo, H.; Maiello, M.R.; Aldinucci, D.; Pinto, A.; Normanno, N. 2008. The Role of the EGFR Signaling in Tumor Microenvironment. J. Cell. Physiol, 214 (3): 559-67. DOI: 10.1002 / jcp.21260

(38) Dong, Z.; Liu, L. H.; Han, B.; Pincheira, R.; Zhang, J. T. 2004. Role of eIF3 p170 in controlling synthesis of ribonucleotide reductase M2 and cell growth. Oncogene, 23 (21): 3790-801. DOI: 10.1038 / sj.onc.1207465

(39) Spratlin, J. L.; Cohen, R. B.; Eadens, M. L.; Gore, L.; Camidge, D. R.; Diab, S.; Leong, S.; O'bryant, C.; Chow, L. Q.; Serkova, N. J.; Meropol, N. J.; LEWIS, N. L.; Chórico, E. G.; Fox, F.; Youssoufian, H.; Rowinsky, E. K.; Eckhardt, S. G. 2010. Phase I pharmacologic and biologic study of ramucirumab (IMC-1121B), a fully human immunoglobulin G1 monoclonal antibody targeting the vascular endothelial growth factor receptor- 2. J Clin Oncol, 28 (5): 780-787. DOI: 10.1200 / JCO.2009

(40) Funaki, H.; Nishimura, L.; Harada, S.; Ninomiya, I.; Terada, I.; Fushida, S.; Tani, T.; Fujimura, T.; Kayahara, H.; Shimizu, K.; Ohta, T.; Miwa, K. 2003. Expression of vascular endothelial growth factor D is associated with lymph node metastasis in human colorectal carcinoma. Oncology, 64 (4): 416-422.

(41) Royston D.; Jackson D.G. 2009. Mechanisms of lymphatic metastasis in human colorectal adenocarcinoma. J Pathol, 217 (5): 608–619. DOI: 10.1002 / path.2517.

(42) Li, P.; Lin J.E.; Chervoneva, I.; Schulz, S.; Waldman, S. A.; Pitari, G. M. 2007. Homeostatic control of the crypt-villus axis by the bacterial enterotoxin receptor guanylyl cyclase C restricts the proliferating compartment in intestine. im J Pathol, 171 (6): 1847–1858.

(43) Pilat, N.; Grünberger, T.; L, F.; Mittlböck, M.; Perisanidis, B.; Kappel, S.; Wolf, B.; Starlinger, P.; Kührer, I.; Mühlbacher, F.; Kandioler, D. 2015. Assessing the TP53 marker type in patients treated with or without neoadjuvant hemotherapy for resectable colorectal liver metastases: A p53 Research Group study. EJSO, 41 (5): 683-689. DOI: 10.1016/j.ejso.2015.02.003

(44) Liang, Z.; Wu, H.; Xia, J.; Li, Y.; Zhang, Y.; Huang, K.; Wagar, N.; Yoon, Y.; Cho, H. T.; Scala, S.; Shim, H. 2010. Involvement of MiR-326 in chemotherapy resistance of breast cancer through modulating expression of multidrug resistanceassociated protein 1. Biochem. Pharmacol, 79 (6): 817- 824. DOI: 10.1016 / j.bcp.2009.10.017.

(45) Goldstein, J.; Tran, B.; Ensemble, J.; Gibbs, P.; Wong, H. L.; Wong, S. F.; Vilar, E.; Gravata, J.; Broaddus, R.; Kopetz, S.; Desai, J.; Overman, M. J. 2014. Multicenter retrospective analysis of metastatic colorectal cancer (CRC) with highlevel microsatellite instability (MSI-H). Ann Oncol, 25 (5): 1032– 1038. DOI: 10.1093/annonc/mdu100.

(46) Morkel, M.; Riemer, P.; Blaker, H.; Sers, C. 2015. Similar but different: Distinct roles for KRAS and BRAF oncogenes in colorectal cancer development and therapy resistance. Oncotarget, 6 (25): 20785-800.

(47) Xu, J.; Li, D.; Ke, Z.; Liu, P.; Maubach, L.; Zhuo, L. 2009. Cathepsin S is aberrantly overexpressed in human hepatocellular carcinoma. Mol Med Report, 2 (5): 713–718. DOI: 10.3892/mmr_00000161

(48) Flannery, T,; Mcquaid, S; Mcgoohan, C.; Mcconnell, R. S.; MCgregor, G.; Mirakhur, M.; Hamilton, P.; Diamante, J.; Cran, G.; Walker, B.; Scott, C.; Martin, L.; Ellison, D.; Patel, C.; Nicholson, C.; Mendelow, D.; MCcormick, D.; Johnston, P. G. 2006. Cathepsin S expression: an independent prognostic factor inglioblastoma tumours- A pilot study. Int J Cancer, 119 (4): 854–860.

(49) Urun, Y. 2017. ERCC1 as a prognostic factor for survival in patients with advanced urothelial cancer treated with platinum based chemotherapy: A systematic review and meta-analysis. Critical Reviews in Oncology / Hematology, 120: 120–126. DOI: 10.1016 / j.critrevonc.2017.10.012.

(50) Kassem, A. B.; Salem, S. E.; Abdelrahim, M. E.; Disse, A. S.; Salahuddin, A.; Hussein, M. M.; Bahnassy, A. A. 2017. ERCC1 and ERCC2 as predictive biomarkers to oxaliplatin-based chemotherapy in colorectal cancer patients from Egypt. Exp Mol Pathol. 102 (1): 78-85. DOI: 10.1016/j.yexmp.2017.01.006.

Published

2019-06-01

Issue

Section

Revisão da Literatura

How to Cite

PREDICTIVE AND PROGNOSTIC BIOMARKERS FOR PERSONALIZED MEDICINE OF COLORECTAL CANCER. Acta Biologica Brasiliensia, [S. l.], v. 2, n. 1, p. 54–79, 2019. DOI: 10.18554/acbiobras.v2i1.8654. Disponível em: https://seer.uftm.edu.br/revistaeletronica/index.php/acbioabras/article/view/8654. Acesso em: 5 dec. 2025.