ASEXUAL REPRODUCTION IN BLATTARIA FACULTATIVELY PARTHENOGENETIC
DOI:
https://doi.org/10.18554/acbiobras.v3i2.8749Keywords:
Cockroach, Evolution of sex, Sexual pheromoneAbstract
Optional parthenogenesis, observed in some groups of insects, is a reproductive strategy in which females can generate other females when sex is prevented or when the availability of ills is not. The cockroach Nauphoeta cinerea (Olivier, 1789) (Blattaria: Blaberidae) is suitable for addressing facultative parthenogenesis, not all females can change the sexual mode, so 10 virgin females were collected from a population and isolated in containers for observation of sexual behavior. Female number 8 produced the largest number of ootecas, while females 3 and 7 took longer to produce ootecas. The reduction of the period of production of the ooteca, collaborates for the increase of the parthenogenetic offspring produced by a female, being thus a population produced of parthenogenetic females would be viable for laboratory studies and in vivariums of breeding of cockroach predators.
References
(1) Meirmans, S; Meirmans, PG; KIRKENDALL, LR. 2012. The costs of sex: facing real-world complexities. The Quarterly Review of Biology. 87(1):19-40. DOI: 10.1086/663945.
(2) Burke, NW; Crean, AJ; Bonduriansky, R. 2015. The role of sexual conflict in the evolution of facultative parthenogenesis: a study on the spiny leaf stick insect. Animal Behaviour. 101:117–27.
(3) Lehtonen J; Jennions, MD; Kokko, H. 2012. The many costs of sex. Trends in Ecology e Evolution. 27(3): 172-178. DOI:10.1016/j.tree.2011.09.016.
(4) Cocco, J; Butnariu, AR; Bessa, E; Pasini, A. 2013. Sex produces as numerous and long-lived offspring as parthenogenesis in a new parthenogenetic insect. Canadian Journal of Zoology. 91(3):1-4. DOI: 10.1139/cjz-2012-0289v.91.
(5) Tvedte, ES; Logsdon, JM Jr; Forbes, AA. 2019. Sex loss in insects: causes of asexuality and consequences for genomes. Current Opinion in Insect Science. 31:77-83. DOI: 10.1016/j.cois.2018.11.007.
(6) Medeiros, ADES; De Lima, PNS; DE Araujo, AFL; DE Albuquerque, CMR. 2016. Growth and developmental time in the parthenogenetic scorpion Tityus stigmurus (Thorell, 1876) (Scorpiones: Buthidae). Acta Scientiarum. Biological Sciences. 38(1):85-90.
(7) Lombardo, JA; Elkinton, JS. 2017. Environmental adaptation in an asexual invasive insect. Ecology and Evolution. 7(14):5123-5130. DOI:10.1002/ece3.2894.
(8) Vershinina, AO; Kuznetsova, VG. 2016. Parthenogenesis in Hexapoda: Entognatha and non-holometabolous insects. Journal Zoological of Systematics Evolutionary Research. 54:257-68.
(9) Hellemans, S; Dolejšová, K; Křivánek, J; Fournier, D; Hanus, R; Roisin, Y. 2019. Widespread occurrence of asexual reproduction in higher termites of the Termes group (Termitidae: Termitinae). BMC Evolutionary Biology. 19(131):1-14. DOI:10.1186/s12862-019-1459-3.
(10) Burke, NW; Bonduriansky, R. 2019. The paradox of obligate sex: The roles of sexual conflict and mate scarcity in transitions to facultative and obligate asexuality. Journal of Evolutionary Biology. 32(11):1230-1241. DOI:10.1111/jeb.13523.
(11) Zangl, L; Kunz, G; Berg, C; Koblmüller, S. 2019. First records of the parthenogenetic Surinam cockroach Pycnoscelus surinamensis (Insecta: Blattodea: Blaberidae) for Central Europe. Journal of applied Entomology. 143(3):308-313. DOI:10.1111/jen.12587.
(12) Corley, Ls; Blankenship, JR; Moore, AJ. 2001. Genetic variation and asexual reproduction in the facultatively parthenogenetic cockroach Nauphoeta cinerea: implications for the evolution of sex. Journal Evolutionary Biology. 14:68-74. DOI:10.1046/j.1420-9101.2001.00254.x.
(13) Santos, DS; Rosa, ME; Zanatta, AP; Oliveira, RS; Almeida, CGM; Leal, AP; Sanz, M; Fernandes, KA; Souza, VQ; Assis, DR; Pinto, E; Belo, CAD. 2019. Neurotoxic effects of sublethal concentrations of cyanobacterial extract containing anatoxin-a(s) on Nauphoeta cinerea cockroaches. Ecotoxicology and Environmental Safety. 171:138-145.
(14) Katoh, K; Iwasaki, M; Hosono, S; Yoritsune, A; Ochiai, M; Mizunami, M; Nishino, H. 2017. Group-housed females promote production of asexual ootheca in American cockroaches. Zoological Letters. 3:3. DOI 10.1186/s40851-017-0063-x
(15) Harper, JM. 2018. Body size and the righting response: a cost of reproductive success in Nauphoeta cinerea (Blattodea: Blaberidae)? Journal of Entomological Science. 53(4):523-532.
(16) Silva, ACB; Pelli, A. 2019. Estado atual do conhecimento das baratas, ordem Blattaria Burmeister, 1829. Revista UNINGÁ Review. 34(2):28-38.
(17) Tanaka, M; Daimon, T. 2019. First molecular genetic evidence for automictic parthenogenesis in cockroaches. Insect Science. 26(4):649-655. DOI:10.1111/1744-7917.12572.
(18) Salazar, L; Planas-Sitjà, I; Sempo, G; Deneubourg, JL. 2018. Individual thigmotactic preference affects the fleeing behavior of the American cockroach (Blattodea: Blattidae). Journal Insect Science. 18(1):1-7.
(19) Silva, ACB; Pelli, A. 2020. Metodologia para criação de três espécies de Blattaria Burmeister, 1829: Nauphoeta cinerea (Olivier, 1789), Blaberus giganteus (Linnaeus, 1758) e Gromphadorhina portentosa (Schaum, 1853). Acta Biologica Brasiliensia. 3(1): 14-21.
(20) Uzsák, A; Schal, C. 2012. Differential physiological responses of the German cockroach to social interactions during the ovarian cycle. Journal of Experimental Biology. 215(30):37–44.
(21) Louis, MR; Edwin, RW. 1956. Parthenogenesis in Cockroaches. Annals of the Entomological Society of America. 49(3):195–204. DOI:10.1093/aesa/49.3.195.
(22) Nishino, H; Iwasaki, M; Mizunami, M. 2011. Pheromone detection by a pheromone emitter: a small sex pheromone-specific processing system in the female American cockroach. Chemical Senses. 36(3):261–70.