MICROPLASTIC CONTAMINATION IN THE LIVER OF ILIOPHAGOUS FISH IN AN URBANIZED RIVER IN THE SUBTROPICAL CLIMATE OF SOUTHERN SOUTH AMERICA
DOI:
https://doi.org/10.18554/acbiobras.v7i2.7772Keywords:
KEYWORDS: Polymers, Freshwater Fish, Condition Factor, Sexual Dimorphism.Abstract
ABSTRACT
Microplastics (MPs) have been detected in a variety of ecosystems, including atmospheric, aquatic, and terrestrial environments, and have also been found in the organs and systems of organisms inhabiting these environments. However, little is known about the actual health effects on vertebrates, including humans. Therefore, the present study investigated the presence of MPs in the liver of 54 Cyphocharax voga fish from the Rio dos Sinos, an urban river located in southern South America. It explored the relationship between MP concentration and the condition factor (Kn) of the fish, revealing no significant association between the average concentration of MPs per gram of liver tissue and the Kn condition factor. The analysis highlights the complexity of interactions between MPs and aquatic organisms, emphasizing the need for comprehensive assessments of the risks and impacts of microplastics in aquatic ecosystems.
KEYWORDS: Polymers, Freshwater Fish, Condition Factor, Sexual Dimorphism.
References
REFERÊNCIAS
Bergmann M, Gieskes WWC, Langenbuch RE, Piel MH, Klein R. High quantities of microplastic in Arctic deep-sea sediments. Nature Communications. 2019; 10(1). https://doi.org/10.1021/acs.est.7b03331
Conti GO, Ferrante M, Banni M, Favara C, Nicolosi I, Cristaldi A, Fiore M, Zuccarello P. Micro e nanoplásticos em frutas e vegetais comestíveis: a primeira avaliação de riscos de dieta para a população em geral. Pesquisa Ambiental. 2020; 187: 109677. https://www.sciencedirect.com/science/article/pii/S0013935120305703?via%3Dihub
Wang D, Su L, Ruan HD, Chen J, Lu J, Lee CH, Jiang SY. Quantitative and qualitative determination of microplastics in oyster, seawater and sediment from the coastal areas in Zhuhai, China. Marine Pollution Bulletin. 2021; 164: 112000. https://doi.org/10.1016/j.marpolbul.2021.112000
Lu J, Wu J, Wu J, Xu Y, Zhang C, Luo Y. Adsorption and desorption of steroid hormones by microplastics in seawater. Bulletin of Environmental Contamination and Toxicology. 2021; 107(4): 730-735. https://doi.org/10.1007/s00128-020-02784-2
Bayo J, Rojo D, Olmos S. Weathering indices of microplastics along marine and coastal sediments from the harbor of Cartagena (Spain) and its adjoining urban beach. Marine Pollution Bulletin. 2022; 178: 113647. https://doi.org/10.1016/j.marpolbul.2022.113647
Bonyadi Z, Maghsodian Z, Zahmatkesh M, Nasiriara J, Ramavandi B. Investigation of microplastic pollution in Torghabeh River sediments, Northeast of Iran. Journal of Contaminant Hydrology. 2022; 250: 104064. https://doi.org/10.1016/j.jconhyd.2022.104064
Kor BL, Cheng YY, Huang ST. No significant linear or monotonic relationship between the prevalence of microplastics and the weight. length or trophic level of fish. Marine Pollution Bulletin. 2023; 167: 112646. https://doi.org/10.1016/j.marpolbul.2022.112646
Nawar N, Rahman MM, Chowdhury FN, Marzia S, Ali MM, Akbor MA. Siddique MAB, Khatun MA, Shahjalal M, Huque R, Malafaia G. Caracterização da poluição microplástica no rio Pasur do ecossistema Sundarbans (Bangladesh) com ênfase na água, sedimentos e peixes. Science of The Total Environment. 2023; 868: 161704. https://doi.org/10.1016/j.scitotenv.2023.16170
Barboza LGA, Lopes C, Oliveira P, Bessa F, Otero V, Henriques B, Raimundo J, Miguel Caetano M, Vale C, Guilhermino L.Microplastics in wild fish from North East Atlantic Ocean and its potential for causing neurotoxic effects, lipid oxidative damage, and human health risks associated with ingestion exposure. Science of the Total Environment. 2020; 717: 134625. https://www.sciencedirect.com/science/article/pii/S0048969719346169
Le Cren ED. The Length-Weight Relationship and Seasonal Cycle in Gonad Weight and Condition in the Perch (Perca fluviatilis). Journal of Animal Ecology. 1951; 20(2): 201-219. https://www.jstor.org/stable/1540?origin=crossref
Satake F, Ishikawa MM, Hisano H, Pádua SB, Tavares-Dias M. Relação peso-comprimento, fator de condição e parâmetros hematológicos de Dourado Salminus brasiliensis cultivados em condições experimentais. Dourados, MG: Embrapa Agropecuária Oeste, 2009. https://www.google.com/url?q=https://www.infoteca.cnptia.embrapa.br/bitstream/doc/574003/1/BP200951.pdf&sa=D&source=docs&ust=1720659181069875&usg=AOvVaw16b_BeZLiMxGbwoJwT2LFN
Rocha DC, Fernandes MJ, Oliveira AB. Efeitos tóxicos de microplásticos em organismos aquáticos. Aquatic Toxicology. 2023; 254: 106697. https://doi.org/10.1016/j.aquatox.2023.106697
Lima-Junior SE, Cardone IB, Goitein R. Determinação de um método para cálculo do Fator de Condição Alométrico de peixes. Acta Scientiarum Biological Sciences. 2008; 24: 397-400. https://doi.org/10.4025/actascibiolsci.v24i0.2311
Araújo FG, Guimarães DG, Lima RMN, Prado VHM. Influência de variáveis ambientais sobre a ictiofauna de riachos do Rio Araguaia, Planalto Central, Brasil. Neotropical Biology and Conservation. 2011; 6(2): 84-91.
Bagenal TB, Tesch FW. Idade e crescimento. In: Bagenal T, editor. Métodos para avaliação da produção de peixes em águas doces. 3. ed. Oxford, Inglaterra: Blackwell Science Publications, 1978.
Omogoriola DO, Anifowoshe AT, Ayoola SO, Bamgbala AO. Length-weight relationships and condition factors of some commercially important fish species in Lagos Lagoon, Nigeria. International Journal of Biological and Chemical Sciences. 2011; 5(2): 739-747. https://www.ajol.info/index.php/ijbcs/article/view/7214
Comitê de Gerenciamento da Bacia Hidrográfica do Rio dos Sinos (COMITESINOS). Caracterização da Bacia Hidrográfica do Rio dos Sinos. https://www.comitesinos.com.br/bacia-hidrografica-do-rio-dos-sinos#:~:text=Al%C3%A9m%20de%20via%20natural%20de,para%20os%20mais%20diversos%20fins
Ferraz M, Bauer AL, Valiati VH, Schulz UH. Microplastic Concentrations in Raw and Drinking Water in the Sinos River, Southern Brazil. Water. 2020; 12(11): 3115. https://www.mdpi.com/2073-4441/12/11/3115
Corrêa F, Piedras SRN. Alimentação de Cyphocharax voga (Hensel, 1869) (Characiformes, Curimatidae) no arroio Corrientes, Pelotas, Rio Grande do Sul, Brasil. Biotemas. 2008; 21(4): 117-122. https://doi.org/10.5007/2175-7925.2008v21n4p117
Fink WL, Fink SV. A Amazônia central e seus peixes. Acta Amazonica. 1978; 8(4): 19-42. https://link.springer.com/article/10.1007/s10499-020-00610-5
Hartz SM, Barbieri G. Dinâmica quantitativa da alimentação de Cyphocharax voga (Hensel, 1869) da Lagoa Emboaba, RS, Brasil (Characiformes, Curimatidae). Comunicações Comunicações do Museu de Ciências e Tecnologia PUCRS, Série Zoologia. 1993; 6(1): 63-74. https://editora.pucrs.br/edipucrs/acessolivre/periodicos/comunicacoes-mct/download/1993.v6.pdf
Giani A, Oliveira CS, Lima FR, Souza RA, Pereira AS. Length-weight relationships and condition factor of fish species in tropical rivers. Journal of Fisheries Biology. 2023; 8(3): 529-543. https://link.springer.com/article/10.1007/s10499-020-00610-5
Sulaiman B, Woodward JC, Shiels HA. Riverine microplastics and their interaction with freshwater fish. Aquaculture International. 2023; 31(5): 987-1002. https://link.springer.com/article/10.1007/s10499-023-00756-4
Baldisserotto B. Fisiologia de peixes aplicada à piscicultura. 3. ed. Santa Maria, RS: Ed. da UFSM, 2018. https://www.editoraufsm.com.br/produto/fisiologia-de-peixes-aplicada-a-piscicultura
Kang H, Park S, Lee B, Ahn J, Kim S. Modification of a Nile Red Staining Method for microplastics analysis: a Nile Red Plate Method. Water. 2020; 12: 3251. https://www.mdpi.com/2073-4441/12/11/3251
Guzman MK, Andjelkovi? M, Jovanovi? V, Jung J, Kim J, Dailey LA, Rajkovi? A, Meulenaer B, Velickovi? TC. Comparative profiling and exposure assessment of microplastics in differently sized Manila clams from South Korea by ?FTIR and Nile Red staining. Marine Pollution Bulletin. 2022; 181: 113846. https://doi.org/10.1016/j.marpolbul.2022.113846
Shim WJ, Song YK, Hong SH, Jang M. Identification and quantification of microplastics using Nile Red staining. Marine Pollution Bulletin. 2016; 113(1-2): 469-476. https://www.sciencedirect.com/science/article/pii/S0025326X16308669
Maes T, Jessop R, Wellner N, Haupt K, Mayes A. A rapid-screening approach to detect and quantify microplastics based on fluorescent tagging with Nile Red. Scientific Reports. 2017; 7: 44501. https://www.nature.com/articles/srep4450
Gao Z, Ciadziel, Chen. Microplastics profile in sludge from a university wastewater treatment plant and the influence of chemical digestions on Nile red stained microplastics. Journal of Environmental Chemical Engineering. 2023; 11(3): 109671. https://doi.org/10.1016/j.jece.2023.109671
Alvim CB, Bes-Piá MA, Mendonza-Roca JA, Alonso-Molina JL. Identification of microfibers in drinking water with Nile Red, limitations and strengths. Journal of Environmental Chemical Engineering. 2023; 11(3): 109697. https://www.sciencedirect.com/science/article/abs/pii/S2213343723004360
Galvão LS, Ferreira RR, Fernandes EMS, Correia CA, Valera TS, Rosa DS, Wiebeck H. Analysis of selective fluorescence for the characterization of microplastic fibers: use of a Nile Red-based analytical method to compare between natural and synthetic fibers. Journal of Hazardous Materials. 2023; 443(Part A): 130217. https://doi.org/10.1016/j.jhazmat.2022.130217
Shruti VC, Pérez-Guevara F, Roy PD, Kutralam-Muniasamy G. Analyzing microplastics with Nile Red: emerging trends, challenges and prospects. Journal of Hazardous Materials. 2022; 423(Part B): 127171. DOI: 10.1016/j.jhazmat.2021.12717
Instituto Humanitas Unisinos. Rio dos Sinos: um dos dez rios mais poluídos do Brasil. Entrevista especial com Arno Kayser. 2014. https://www.ihu.unisinos.br/entrevistas/529849-rio-dos-sinos-um-dos-dez-rios-mais-poluidos-do-brasil-entrevista-especial-com-arno-kayser#
Hossain MS, Sobhan F, Uddin MN, Sharifuzzaman SM, Chowdhury SR, Sarker S, Chowdhury MSN. Microplastics in fishes from the Northern Bay of Bengal. Science of The Total Environment. 2019; 690: 821-830. https://doi.org/10.1016/j.scitobbtenv.2019.07.065
Karami A, Golieskardi A, Choo CK, Romano N, Ho YB, Salamatinia B. A high-performance protocol for extraction of microplastics in fish. Science of The Total Environment. 2017; 578: 485-494. https://doi.org/10.1016/j.scitotenv.2016.10.213.
Meyers N, Catarino AI, Declercq AM, Brenan A, Devriese L, Vandegehuchte M, De Witte B, Janssen C, Everaert G. Microplastic detection and identification by Nile red staining: Towards a semi-automated, cost- and time-effective technique. Science of The Total Environment. 2022, 823: 153441. https://www.sciencedirect.com/science/article/pii/S0048969722005332
Elsey D, Jameson D, Raleigh B, Cooney MJ. Fluorescent measurement of microalgal neutral lipids. Journal of Microbiological Methods. 2007; 68(3): 639-642. DOI: 10.1016/j.mimet.2006.11.008
Salla RF, Oliveira FN, Jacintho JC, Cirqueira F, Tsukada E, Vieira LG, Rocha TL. Microplastics and TiO2 nanoparticles mixture as an emerging threat to amphibians: a case study on bullfrog embryos. Environmental Pollution. 2024; 346: 123624. https://doi.org/10.1016/j.envpol.2024.123624.
Hendrickson E, Minor EC, Schreiner K. Abundância e composição de MPs no oeste do Lago Superior, conforme determinado por microscopia. Pyr-GC/MS e FTIR. Ciência e Tecnologia Ambiental. 2018; 52(4): 1787-1796. https://pubs.acs.org/doi/epdf/10.1021/acs.est.7b05829?src=getftr
Li J, Wang Z, Rotchell JM, Shen X, Li Q, Zhu J. Onde estamos? Para uma compreensão da acumulação seletiva de microplásticos em mexilhões. Poluição Ambiental. 2021; 286: 117543. https://doi.org/10.1016/j.envpol.2021.117543
Joint Group of Experts on the Scientific Aspects of Marine Environmental Protection (GESAMP). History. http://www.gesamp.org/about/history
Py-Daniel LHR, Fernandes CC. Dimorfismo sexual em Siluriformes e Gymnotiformes (Ostariophysi) da Amazônia. Acta Amazonica. 2005; 35(1). https://doi.org/10.1590/S0044-59672005000100015
Garcia EQ, Zuanon J. Dimorfismo sexual no peixe elétrico, Gymnorhamphichthys rondoni (Rhamphichthyidae: Gymnotiformes). Acta Amazonica. 2019; 49(3). https://doi.org/10.1590/1809-4392201804392
Vazzoler, AEAM. Biologia da reprodução de peixes teleósteos: teoria e prática. Maringá, PR: EDUEM; São Paulo: SBI, 1996. http://old.periodicos.uem.br/~eduem/novapagina/?q=system/files/Biologia%20da%20reprodu%C3%A7%C3%A3o%20de%20peixes%20tele%C3%B3steos.pdf
Barros N, Nascimento W, Araújo A, Gurgel L, Chellappa S. Aspectos reprodutivos de Pimelodella gracilis (Valenciennes, 1835) (Osteichthyes: Pimelodidae) do açude da ecoregião Caatinga. Biota Amazônia. 2011; 1: 53-59. http://dx.doi.org/10.18561/2179-5746/biotaamazonia.v1n2p53-59
Buckup PA. Taxonomia e filogenia de peixes de riachos brasileiro. Oecologia Australis. 2021; 25(2): Special Issue: Ecologia de Peixes de Riacho. DOI: https://doi.org/10.4257/oeco.2021.2502.01
Bertoldi C, Lara LZ, Mizushima FAL, Martins FCG, Battisti MA, Hinrichs R, Fernandes AN. First evidence of microplastic contamination in the freshwater of Lake Guaíba, Porto Alegre, Brazil. Sci Total Environ. 2021; 759:143503. https://www.sciencedirect.com/science/article/pii/S0048969721044748
Bauer AL, Ferraz M, Souza VC, Schulz UH. Far from urban areas: plastic uptake in fish populations of subtropical headwater streams. Brazilian Journal of Biology. 2022; 82. https://doi.org/10.1590/1519-6984.267886
Browne MA, Galloway T, Thompson R. Microplastic: an emerging contaminant of potential concern? Integrated Environmental Assessment and Management. 2009; 3(4): 559-561. https://doi.org/10.1002/ieam.5630030412
Qualhato G, Vieira LG, Oliveira M, Rocha TL. Plastic microfibers as a risk factor for the health of aquatic organisms: A bibliometric and systematic review of plastic pandemic. The Science of The Total Environment. 2023; 870: 161949. DOI: 10.1016/j.scitotenv.2023.161949
Menéndez D, Blanco-Fernandez C, Machado-Schiaffino G, Ardura A, Garcia-Vazquez E. High microplastics concentration in liver is negatively associated with condition factor in the Benguela hake Merluccius polli. Ecotoxicology and Environmental Safety. 2023; 262: 115135.https://doi.org/10.1016/j.ecoenv.2023.115135.
Collard F, Gilbert B, Compère F, Eppe G, Das K, Jauniaux T, Parmentie E. Microplastics in livers of European anchovies (Engraulis encrasicolus, L.). Environmental Pollution. 2017; 229: 1000-1005. https://doi.org/10.1016/j.envpol.2017.07.089.
Li RJ, Tu C, Li LZ, Wang XY, Yang J, Feng YD, Zhu X, Fan QH, Luo YM. Rastreamento visual de microplásticos sem rótulo em mudas de trigo e seus efeitos no crescimento e fisiologia da cultura. J Hazard Mater. 2023; 456:131675. https://doi.org/10.1016/j.jhazmat.2023.131675
Fiore CD, Ishikawa Y, Wright SL. A review on methods for extracting and quantifying microplastic in biological tissues. Journal of Hazardous Materials. 2024; 464: 132991. https://doi.org/10.1016/j.jhazmat.2023.132991.
São Pedro APR, Caixeta DS, Rezende VE, Silva ECM, Ferreira GTF, Golin R, Deluque AL, Morais EB. Distribuição temporal e espacial de bactérias associadas a microplásticos removidos de sedimento de córrego urbano. Revista Ibero-Americana de Ciências Ambientais. 2023; 13(9): 86-97. DOI: http://doi.org/10.6008/CBPC2179-6858.2022.009.0007
Panizzon J, Lima AC, Oliveira DL, Fürh KT, Gehlen G, Sobral P, Jahno VD. Microplastics in the Sinos River, Southern Brazil. Available at SSRN. 2022. https://ssrn.com/abstract=4061624
Sá LC, Oliveira M, Ribeiro F, Rocha TL, Futter MN. Studies of the effects of microplastics on aquatic organisms: what do we know and where should we focus our efforts in the future? Science of The Total Environment, 2018; 645: 1029-1039. https://doi.org/10.1016/j.scitotenv.2018.07.207.
Oliva-Hernández BE, Santos-Ruiz FM, Muñoz-Wug MA, Pérez-Sabino JF. MPs em tilápia do Nilo (Oreochromis niloticus) do Lago Amatitlán. Revista Ambiente & Água [online]. 2021; 16(5). https://doi.org/10.4136/ambi-agua.2754
Oliveira CWS, Corrêa CS, Smith WS. Food ecology and presence of microplastic in the stomach content of neotropical fish in an urban river of the upper Paraná River Basin. Revista Ambiente & Água. 2020; 15(4): e2551. https://doi.org/10.4136/ambi-agua.2551
Nuamah F, Tulashie SK, Debrah JS, Pèlèbè ROE. Microplastics in the Gulf of Guinea: an analysis of concentrations and distribution in sediments, gills and guts of fish collected off the coast of Ghana. Environmental Research. 2023; 234: 116567. https://doi.org/10.1016/j.envres.2023.116567
Bugatti C, Almeida KC, Guimarães MSA, Amâncio NFG. Microplatistics and Nanoplastic and their relevance in human health: literature review. Research, Society And Development. 2023; 12(1): e6712139302. https://rsdjournal.org/index.php/rsd/article/view/39302.
Triebskorn R et al. Relevância de nano e MPs para ecossistemas de água doce: uma revisão crítica. Trac. Análise de Tendências. Chem. 2019; 110: 375-392. https://www.sciencedirect.com/science/article/abs/pii/S0165993619303224
Santos NO, Busquets R, Campos LC. Insights into the removal of microplastics and microfibres by Advanced Oxidation Processes. Science of The Total Environment. 2023; 861: 160665. https://doi.org/10.1016/j.scitotenv.2022.160665.
Latchere O, Roman C, Métais I, Perrein-Ettajani H, Mouloud M, Georges D, Feurtet-Mazel A, Gigault J, Catrouillet C, Baudrimont M, Châtel A. Toxicity assessment of environmental MPs and NPs and polystyrene NPs on the bivalve Corbicula fluminea using a multi-marker approach. Comparative Biochemistry and Physiology Part C: Toxicology & Pharmacology. 2023, 273: 109714. https://doi.org/10.1016/j.cbpc.2023.109714
Bogevik AS, Ytteborg E, Madsen AK, Jordal AEO, Karlsen OA, Rønnestad I. PCB-126 spiked to polyethylene microplastic ingested by juvenile Atlantic cod (Gadus morhua) accumulates in liver and muscle tissues. Marine Pollution Bulletin. 2023; 187: 114528. ISSN 0025-326X. https://doi.org/10.1016/j.marpolbul.2022.114528
Sequeira IF, Prata JC, Costa JP, Duarte AC, Rocha-Santos T. Worldwide contamination of fish with microplastics: a brief global overview. Marine Pollution Bulletin. 2020; 160: 111681. https://doi.org/10.1016/j.marpolbul.2020.111681
Silva PR, Ferreira MA, Oliveira L. Impactos ambientais na fauna aquática. Iheringia: Série Zoologia. 2023; 108(2): 123-135, 2023. https://www.scielo.br/j/isz/a/CsGRhRgwFBwYQV3G6yMHN8K/?format=pdf&lang=pt
Valente JV, Barros RA, Cristóvão AC, Pastorinho MR, Sousa ACA. Avaliação do potencial citotóxico de MPs em linhas celulares intestinais, hepáticas e neuronais. Revista Captar: Ciência e Ambiente para Todos. 2021; 10. https://proa.ua.pt/index.php/captar/article/view/23950
Kam S, Aneta W, Khaled A, Grimalt JO, Erbe A, Röllin HB, Weihe P, Díaz GJ, Singh R, Visnes T, Rautio A, Odland JØ, Wagner M. A children’s health perspective on nano- and microplastics. Environmental Health Perspectives. 2022; 130(1): 015001. https://doi.org/10.1289/EHP9086
Silva LNL, Carvalho GS, Hurtado TC, Oliveira Junior ES, Ignácio ARA. Concentração de mercúrio em pisciculturas do Mato Grosso, Brasil: uma necessidade de análise para redução de impactos sobre o pescado. Caderno Pedagógico. 2024; 21(5): e4171. https://doi.org/10.54033/cadpedv21n5-146
Yin K, Wang D, Zhang Y, Lu H, Hou L, Guo T, Zhao H, Xing M. Polystyrene microplastics promote liver inflammation by inducing the formation of macrophages extracellular traps. Journal of Hazardous Materials. 2023; 452: 131236. https://doi.org/10.1016/j.jhazmat.2023.131236
Dong X, Liu X, Hou Q, Wang Z. From natural environment to animal tissues: a review of microplastics(nanoplastics) translocation and hazards studies. Science of The total Environment. 2023; 855: 158686. https://doi.org/10.1016/j.scitotenv.2022.15868
Lasrado N, Jia T, Massilamany C et al. Mecanismos de hormônios sexuais na autoimunidade: foco na EAE. Biol Sex Differ. 2020; 11(50). https://doi.org/10.1186/s13293-020-00325-4