GROWTH PERFORMANCE, HEMATOLOGICAL AND HISTOLOGICAL PARAMETERS OF NILE TILAPIA LARVAE FED DIETS SUPPLEMENTED WITH B-GLUCANES AND NUCLEOTIDES

Authors

  • Caroline Lopes de Melo Universidade Professor Edson Vellano
  • Imaculada Carvalho Universidade Federal de Minas Gerais
  • Murilo Henrique Tank Fortunato Pecege
  • Andressa Santana Natel Universidade Professor Edson Vellano
  • Ariane Flávia do Nascimento Instituto Federal Do Sul de Minas Gerais
  • Marcelo Mattos Pedreira Universidade Federal dos Vales do Jequitinhonha e Mucuri https://orcid.org/0000-0002-8676-2254
  • Williane Ferreira Menezes Universidade Federal de Minas Gerais https://orcid.org/0000-0002-9812-2430
  • Matheus Philip Santos Amorim Universidade Federal de Minas Gerais
  • João Fernando Albers Koch Biorigin

DOI:

https://doi.org/10.18554/acbiobras.v7i2.7883

Keywords:

Immunostimulants, Fish Farming, Growth performance, Stress

Abstract

Food additives are used to improve immunity and performance. This study aimed to evaluate the dietary addition of nucleotides and ?-glucans in the larval stage of Nile tilapia on growth, hematoimmunological performance, histological changes, survival, and stress challenges. The experiment was conducted for 30 days using a total of 800 larvae distributed in 20 aquariums in four treatments: Diet without supplementation; diet supplemented with 0.75g · kg-1 ?-glucan; diet supplemented with 2g · kg-1 nucleotide and diet supplemented with 0.75 + 2g · kg-1 ?-glucan and nucleotide. The diet without supplementation had lower survival during the experimental period and after challenges and greater villus heights. Larvae fed a diet supplemented showed greater final weight, daily weight gain, total length and specific growth rate, better responses in the hypoxia test. Hematological parameters did not differ between treatments. The thickness of the villi was smaller in the treatment with nucleotide supplementation. In conclusion, treatment with a diet supplemented with ?-glucan + Nucleotides positively influenced the productive performance and survival rate of Nile tilapia larvae.

Author Biographies

Caroline Lopes de Melo, Universidade Professor Edson Vellano

Zootecnista, mestre em Ciência Animal, doutoranda em Zootecnia.

Imaculada Carvalho, Universidade Federal de Minas Gerais

Zootecnista, doutoranda em Zootecnia.

Murilo Henrique Tank Fortunato, Pecege

Biólogo, doutor em Agricultura (pesquisador nas áreas da ecologia de ecossistemas aquáticos e piscicultura). Professor orientador (USP/ESALQ)

Andressa Santana Natel, Universidade Professor Edson Vellano

Professora doutora na Unifenas.

Ariane Flávia do Nascimento, Instituto Federal Do Sul de Minas Gerais

Professora no IFSULDEMINAS.

Marcelo Mattos Pedreira, Universidade Federal dos Vales do Jequitinhonha e Mucuri

Pesquisador na área da piscicultura.

Williane Ferreira Menezes, Universidade Federal de Minas Gerais

Pesquisadora na área da Zootecnia.

Matheus Philip Santos Amorim, Universidade Federal de Minas Gerais

Pesquisador na área da Ciência Animal

João Fernando Albers Koch, Biorigin

Pesquisador na área da piscicultura.

References

Food and Agriculture Organization (FAO), World Health Organization (WHO). Food safety risk analysis. A guide for national food safety authorities. Rome: FAO; 2006. Disponível em: ftp://ftp.fao.org/docrep/fao/009/a0822e/a0822e00.pdf. Acesso em: 22 jul. 2015.

Ximenes, LF; de Fatima Vidal, M. Piscicultura. In: Caderno Setorial ETENE. 2023; v. 8, n. 272.

Luz, RK; Favero, GC. Tilapia larviculture. In: López-Olmeda, JF; Sánchez-Vázquez, FJ; Fortes-Silva, R., eds. Biology and aquaculture of tilapia. 1ed.: CRC Press; 2021. v. 1, p. 196-220. https://doi.org/10.1201/9781003004134.

Portella MC, Jomori RK, Leitão NJ, Menossi OCC, Freitas TM, Kojima JT, Lopes TS, Clavijo-Ayala JA, Carneiro DJ. Larval development of indigenous South American freshwater fish species, with particular reference to pacu (Piaractus mesopotamicus): A review. Aquaculture. 2014; 432:402-417. https://doi.org/10.1016/j.aquaculture.2014.04.032.

Badawy, TES; Al-Kenawy, D. Assessment of immune response to two immunostimulants as alternatives to antibiotics in diets for Nile tilapia (Oreochromis niloticus). Assessment. 2013; 8(2).

Schwarz KK, do Nascimento JC, Gomes VAA, da Silva CH, Salvador JG, Fernandes MR, Nunes RM. Desempenho zootécnico de alevinos de tilápias do nilo (Oreochromis niloticus) alimentados com levedura de Saccharomyces cerevisiae. Holos. 2016; 3:104-113. https://doi.org/10.15628/holos.2016.1869.

Magnani, M; Castro-Gómez, RJH. Beta-glucana de Saccharomyces cerevisiae: constituição, bioatividade e obtenção. Semina: Ciências Agrárias. 2008; 29(3): 631-650. https://doi.org/10.5433/1679-0359.2008v29n3p631.

Pilarski F, de Oliveira CAF, de Souza FPBD, Zanuzzo FS. Different ?-glucans improve the growth performance and bacterial resistance in Nile tilapia. Fish & Shellfish Immunology. 2017; 70:25-29. https://doi.org/10.1016/j.fsi.2017.06.059.

Aramli, MS; Kamangar, B; Nazari, RM. Effects of dietary ?-glucan on the growth and innate immune response of juvenile Persian sturgeon, Acipenser persicus. Fish & Shellfish Immunology. 2015; 47(1): 606-610. https://doi.org/10.1016/j.fsi.2015.10.004.

Dawood, MA; Koshio, S; Esteban, MA. Beneficial roles of feed additives as immunostimulants in aquaculture: a review. Reviews in Aquaculture. 2018; 10(4): 950-974. https://doi.org/10.1111/raq.12209.

El Hakim Y, Neamat-Allah AN, Baeshen M, Ali HA. Immune-protective, antioxidant and relative genes expression impacts of ?-glucan against fipronil toxicity in Nile tilapia, Oreochromis niloticus. Fish & Shellfish Immunology. 2019; 94:427-433. https://doi.org/10.1016/j.fsi.2019.09.033.

Li, P; Gatlin III, DM. Nucleotide nutrition in fish: current knowledge and future applications. Aquaculture. 2006; 251(2-4): 141-152. https://doi.org/10.1016/j.aquaculture.2005.01.009.

Long M, Lin W, Hou J, Guo H, Li L, Li D, Tang R, Yang F. Dietary supplementation with selenium yeast and tea polyphenols improve growth performance and nitrite tolerance of Wuchang bream (Megalobrama amblycephala). Fish & Shellfish Immunology. 2017; 68:74-83. https://doi.org/10.1016/j.fsi.2017.07.017.

Zhang P, Cao S, Zou T, Han D, Liu H, Jin J, Yang Y, Zhu X, Xie S, Zhou W. Effects of dietary yeast culture on growth performance, immune response and disease resistance of gibel carp (Carassius auratus gibelio CAS ?). Fish & Shellfish Immunology. 2018; 82:400-407. https://doi.org/10.1016/j.fsi.2018.08.044.

Yuan XY, Liu WB, Liang C, Sun CX, Xue YF, Wan ZD, Jiang GZ. Effects of partial replacement of fish meal by yeast hydrolysate on complement system and stress resistance in juvenile Jian carp (Cyprinus carpio var. Jian). Fish & Shellfish Immunology. 2017; 67:312-321. https://doi.org/10.1016/j.fsi.2017.06.028.

Andriamialinirina HJT, Irm M, Taj S, Lou JH, Jin M, Zhou Q. The effects of dietary yeast hydrolysate on growth, hematology, antioxidant enzyme activities and non-specific immunity of juvenile Nile tilapia, Oreochromis niloticus. Fish & Shellfish Immunology. 2020; 101:168-175. https://doi.org/10.1016/j.fsi.2020.03.037.

Lima SA, de Oliveira Pedreira AC, de Freitas JMA, Dalmaso ACS, Chiella RJ, Meurer F, Romão S, Bombardelli RA. Diets containing purified nucleotides reduce oxidative stress, interfere with reproduction, and promote growth in Nile tilapia females. Aquaculture. 2020; 528:735509. https://doi.org/10.1016/j.aquaculture.2020.735509.

Kubitza, F; Kubitza, LMM. Qualidade da água, sistemas de cultivo, planejamento da produção, manejo nutricional e alimentar e sanidade. Panorama da Aqüicultura. 2000; 10(59): 44-53.

APHA - American Public Health Association. Methods for the examination of water and wastewater. 22nd. Rice, EW; Baird, RB; Eaton, AD; Clesceri, LS. Washington, D.C.: American Public Health Association, American Water Works Association, Water Environment Federation; 2012. 1496p.

Boyd, CE; Tucker, CS. Water quality and pond soil analyses for aquaculture. Auburn: Alabama Agricultural Experiment Station, Auburn University; 1992. 183 p.

Hoseini, SM; Mirghaed, AT; Mazandarani, M; Zoheiri, F. Serum cortisol, glucose, thyroid hormones, and non-specific immune responses of Persian sturgeon, Acipenser persicus, to exogenous tryptophan and acute stress. Aquaculture. 2016; 462: 17-23. https://doi.org/10.1016/j.aquaculture.2016.04.031.

Saha, SB; Khatun, MS. Production performances of monosex Nile tilapia, Oreochromis niloticus, in brackishwater ponds. Bangladesh Journal of Zoology. 2014; 42: 261-269. https://doi.org/10.3329/bjz.v42i2.23368.

Luz, RK; Ribeiro, PAP; Ikeda, AL; Santos, AEH; Melillo Filho, R; Turra, EM; Teixeira, EA. Performance and stress resistance of Nile tilapias fed different crude protein levels. Revista Brasileira de Zootecnia. 2012; 41: 457-461. https://doi.org/10.1590/S1516-35982012000200031.

Pryor, GS; Royes, JB; Chapman, FA; Miles, RD. Mannanoligosaccharides in fish nutrition: Effects of dietary supplementation on growth and gastrointestinal villi structure in Gulf of Mexico sturgeon. North American Journal of Aquaculture. 2003; 65(2): 106-111. https://doi.org/10.1577/1548-8454(2003)65<106:MIFNEO>2.0.CO;2.

Hisano, H; Silva, MD; Barros, MM; Pezzato, LE. Levedura íntegra e derivados do seu processamento em rações para tilápia do Nilo: Aspectos hematológicos e histológicos. Acta Scientiarum. Biological Sciences. 2006; 28(4): 311-318.

Schwarz, KK; Furuya, WM; Natali, MRM; Michelato, M; Gualdezi, MC. Mannanoligosaccharide in diets for juvenile Nile tilapia. Acta Scientiarum. Animal Sciences. 2010; 32(2): 197-203. https://doi.org/10.4025/actascianimsci.v32i2.7724.

Dawood, MA; Abdel-Razik, NI; Gewaily, MS; Sewilam, H; Paray, BA; Soliman, AA; El Basuini, MF. ?-Glucan improved the immunity, hepato-renal, and histopathology disorders induced by chlorpyrifos in Nile tilapia. Aquaculture Reports. 2020; 18: 100549. https://doi.org/10.1016/j.aqrep.2020.100549.

Moniello, G; Ariano, A; Panettieri, V; Tulli, F; Olivotto, I; Messina, M; Bovera, F. Intestinal morphometry, enzymatic and microbial activity in laying hens fed different levels of a Hermetia illucens larvae meal and toxic elements content of the insect meal and diets. Animals. 2019; 9(3): 86. https://doi.org/10.3390/ani9030086.

Dela Cruz, PJ D; Dagaas, CT; Mangubat, KM M; Angeles, AA; Abanto, OD. Dietary effects of commercial probiotics on growth performance, digestibility, and intestinal morphometry of broiler chickens. Tropical Animal Health and Production. 2019; 51: 1105-1115. https://doi.org/10.1007/s11250-018-01791-0.

Mercante, CTJ; Martins, YK; do Carmo, CF; Osti, JS; Pinto, CSRM; Tucci, A. Qualidade da água em viveiro de Tilápia do Nilo (Oreochromis niloticus): Caracterização diurna de variáveis físicas, químicas e biológicas, São Paulo, Brasil. Bioikos. 2007; 21(2).

Cagol, L; Zadinelo, IV; Baldan, LT; Ballester, ELC; Pontes, TC; Dos Santos, L D. Concentrações letais de fósforo na água para tilápia do Nilo (Oreochromis niloticus). Acta Iguazu. 2016; 5(3): 71-82. https://doi.org/10.48075/actaiguaz.v5i3.15847.

Egna, HS; Boyd, CE. Dynamics of pond aquaculture. Boca Raton: CRC Press; 1997.

Rajeswari, MV; Rajasree, SRR; Balasubramanian, T. Effect of light levels on growth, survival and skin colour enhancement of marine angelfish, Apolemichthys xanthurus (Bennett, 1833). Turkish Journal of Fisheries and Aquatic Sciences. 2017; 17(6): 1083-1087. https://doi.org/10.4194/1303-2712-v17_6_01.

Tavares-Dias, M; Mariano, WS. Aquicultura no Brasil: Novas perspectivas. Vol. 1. São Carlos: Pedro & João Editores; 2015.

Akkoyunlu, A; Akiner, ME. Pollution evaluation in streams using water quality indices: A case study from Turkey's Sapanca Lake Basin. Ecological Indicators. 2012; 18: 501-511. https://doi.org/10.1016/j.ecolind.2011.12.018.

Doncato, KB; Coldebella, IJ; Spiazzi, CC; Benites, L; Nunes, P; Mazzini, T; Neis, AT. Parâmetros físico-químicos e biológicos de águas de tanques de estabilização. Ciência e Natura. 2013; 35(2): 106-118. http://dx.doi.org/10.5902/2179-460X836.

Cook, MT; Hayball, PJ; Hutchinson, W; Nowak, BF; Hayball, JD. Administration of a commercial immunostimulant preparation, EcoActiva™, as a feed supplement enhances macrophage respiratory burst and the growth rate of snapper (Pagrus auratus, Sparidae). Fish & Shellfish Immunology. 2003; 14(4): 333-345. https://doi.org/10.1006/fsim.2002.0441.

Misra, CK; Das, BK; Mukherjee, SC; Pattnaik, P. Effect of long-term administration of dietary ?-glucan on immunity, growth and survival of Labeo rohita fingerlings. Aquaculture. 2006; 255(1-4): 82-94. https://doi.org/10.1016/j.aquaculture.2005.12.009.

Ai, Q; Mai, K; Zhang, W; Xu, W; Tan, B; Zhang, C; Li, H. Effects of exogenous enzymes (phytase, non-starch polysaccharide enzyme) in diets on growth, feed utilization, nitrogen and phosphorus excretion of Japanese seabass, Lateolabrax japonicus. Comparative Biochemistry and Physiology Part A: Molecular & Integrative Physiology. 2007; 147(2): 502-508. https://doi.org/10.1016/j.cbpa.2007.01.026.

Sealey, WM; Barrows, FT; Hang, A; Johansen, KA; Overturf, K; LaPatra, SE; Hardy, RW. Evaluation of the ability of barley genotypes containing different amounts of ?-glucan to alter growth and disease resistance of rainbow trout Oncorhynchus mykiss. Animal Feed Science and Technology. 2008; 141(1-2): 115-128. https://doi.org/10.1016/j.anifeedsci.2007.05.022.

Dalmo, RA; Bøgwald, J. ß-glucans as conductors of immune symphonies. Fish & Shellfish Immunology. 2008; 25(4): 384-396. https://doi.org/10.1016/j.fsi.2008.04.008.

Bagni, M; Romano, N; Finoia, MG; Abelli, L; Scapigliati, G; Tiscar, PG; Marino, G. Short- and long-term effects of a dietary yeast ?-glucan (Macrogard) and alginic acid (Ergosan) preparation on immune response in sea bass (Dicentrarchus labrax). Fish & Shellfish Immunology. 2005; 18(4): 311-325. https://doi.org/10.1016/j.fsi.2004.08.003.

Choudhury, D; Pal, AK; Sahu, N P; Kumar, S; Das, SS; Mukherjee, SC. Dietary yeast RNA supplementation reduces mortality by Aeromonas hydrophila in rohu (Labeo rohita L.) juveniles. Fish & Shellfish Immunology. 2005; 19(3): 281-291. https://doi.org/10.1016/j.fsi.2005.01.004.

Chagas EC, Pilarski F, Sakabe R, Moraes FRD. Desempenho produtivo e respostas fisiopatológicas de tambaquis alimentados com ração suplementada com ?-glucano. Pesquisa Agropecuária Brasileira. 2013; 48: 899-905. https://doi.org/10.1590/S0100-204X2013000800013

Whittington R, Lim C, Klesius PH. Effect of dietary ?-glucan levels on the growth response and efficacy of Streptococcus iniae vaccine in Nile tilapia, Oreochromis niloticus. Aquaculture. 2005; 248(1-4): 217-225. https://doi.org/10.1016/j.aquaculture.2005.04.013

Lunger AN, Craig SR, McLean E. Replacement of fish meal in cobia (Rachycentron canadum) diets using an organically certified protein. Aquaculture. 2006; 257(1-4): 393-399. https://doi.org/10.1016/j.aquaculture.2005.11.010

Genc MA, Yilmaz E, Genc E, Aktas M. Effects of dietary mannan oligosaccharides (MOS) on growth, body composition, and intestine and liver histology of the hybrid tilapia (Oreochromis niloticus × O. aureus). Israeli Journal of Aquaculture-Bamidgeh. 2007; 59.

Torrecillas S, Makol A, Caballero MJ, Montero D, Robaina L, Real F, Izquierdo MS. Immune stimulation and improved infection resistance in European sea bass (Dicentrarchus labrax) fed mannan oligosaccharides. Fish & Shellfish Immunology. 2007; 23(5): 969-981. https://doi.org/10.1016/j.fsi.2007.03.007

Furlan-Murari PJ, de Lima ECS, de Souza FP, Urrea-Rojas AM, Pupim ACE, de Almeida Araújo EJ, Lopera-Barrero NM. Inclusion of ?-1,3/1,6-glucan in the ornamental fish, Jewel tetra (Hyphessobrycon eques): and its effects on growth, blood glucose, and intestinal histology. Aquaculture International. 2022; 30(1): 501-515. https://doi.org/10.1007/s10499-021-00815-1

Cheng Z, Buentello A, Gatlin III DM. Effects of dietary arginine and glutamine on growth performance, immune responses and intestinal structure of red drum, Sciaenops ocellatus. Aquaculture. 2011; 319(1-2): 247-252. https://doi.org/10.1016/j.aquaculture.2011.06.025

Xu A, Shang-Guan J, Li Z, Gao Z, Huang Y, Chen Q. Effects of garlic powder on feeding attraction activity, growth and digestive enzyme activities of Japanese seabass, Lateolabrax japonicas. Aquaculture Nutrition. 2020; 1-10. https://doi.org/10.1111/anu.13001

Fridman S, Bron JE, Rana KJ. Ontogenic changes in the osmoregulatory capacity of the Nile tilapia Oreochromis niloticus and implications for aquaculture. Aquaculture. 2012; 356: 243-249. https://doi.org/10.1016/j.aquaculture.2012.05.010

Inoue LAKA, Oliveira Maciel P, Gusmão Affonso E, de Lima Boijink C, Tavares-Dias M. Growth, parasitic infection and hematology in Colossoma macropomum Cuvier, 1818 fed diets containing Allium sativum. Journal of Applied Ichthyology. 2016; 32(5): 901-905. https://doi.org/10.1111/jai.13086

Nya EJ, Austin B. Use of garlic, Allium sativum, to control Aeromonas hydrophila infection in rainbow trout, Oncorhynchus mykiss (Walbaum). Journal of Fish Diseases. 2009; 32(11): 963-970. https://doi.org/10.1111/j.1365-2761.2009.01100.x

Sakai M. Current research status of fish immunostimulants. Aquaculture. 1999; 172(1-2): 63-92. https://doi.org/10.1016/S0044-8486(98)00436-0

Vainikka A, Jokinen EI, Kortet R, Paukku S, Pirhonen J, Rantala MJ, Taskinen J. Effects of testosterone and ?-glucan on immune functions in tench. Journal of Fish Biology. 2005; 66(2): 348-361. https://doi.org/10.1111/j.0022-1112.2005.00598.x

Do Huu H, Sang HM, Thuy NTT. Dietary ?-glucan improved growth performance, Vibrio counts, haematological parameters and stress resistance of pompano fish, Trachinotus ovatus Linnaeus, 1758. Fish & Shellfish Immunology. 2016; 54: 402-410. https://doi.org/10.1016/j.fsi.2016.03.161

Shoemaker CA, Klesius PH, Lim C. Immunity and disease resistance in fish. Nutrition and Fish Health. 2001; 149-162.

Silva ETLD, Pedreira MM, Dias MLF, Tessitore AJDA, Ferreira TA. Larvas de linhagens de tilápia do Nilo submetidas à frequências alimentares sob baixa temperatura. Revista Brasileira de Saúde e Produção Animal. 2017; 18: 193-203. https://doi.org/10.1590/S1519-99402017000100018

Hoole D, Bucke D, Burgess P, Wellby I. Cyprinid biology, diseases of carp and other cyprinid fishes. 2008. https://doi.org/10.1002/9780470999752

Ranzani-Paiva MJT, de Pádua SB, Tavares-Dias M, Egami MI. Métodos para análise hematológica em peixes. Maringá: Editora da Universidade Estadual de Maringá-EDUEM; 2013.

Ranzani-Paiva MJT. Células sanguíneas e contagem diferencial dos leucócitos de tainhas, Mugil paltanus, da região estuarino-lagunar de Cananéia – SP. Boletim do Instituto de Pesca. 1995; 22(1): 23-40.

Bittencourt NDLR, Molinari LM, de Oliveira D, de Abreu Filho BA, Dias Filho BP. Haematological and biochemical values for Nile tilapia Oreochromis niloticus cultured in semi-intensive system. Hemoglobin (g/dl). 2003; 10(3.09): 6-58.

Dias DDC, Furlaneto FDPB, Sussel FR, Tachibana L, Gonçalves GS, Ishikawa CM, Ranzani-Paiva MJT. Economic feasibility of probiotic use in the diet of Nile tilapia, Oreochromis niloticus, during the reproductive period. Acta Scientiarum. Animal Sciences. 2020; 42: e47960. https://doi.org/10.4025/actascianimsci.v42i1.47960

Nakandakare IB, Iwashita MKP, Dias DDC, Tachibana L, Ranzani-Paiva MJT, Romagosa E. Incorporação de probióticos na dieta para juvenis de tilápias-do-Nilo: parâmetros hematológicos, imunológicos e microbiológicos. 2013.

Suzuki JB, Collison BC, Falkler Jr WA, Nauman RK. Immunologic profile of juvenile periodontitis: II. Neutrophil chemotaxis, phagocytosis and spore germination. Journal of Periodontology. 1984; 55(8): 461-467. https://doi.org/10.1902/jop.1984.55.8.461

Kindt T, Goldsby R, Osborne B. Kuby Immunology. 6th ed. New York: WH Freeman and Company; 2006.

Martins ML, Miyazaki DMY, Moraes FRD, Ghiraldelli L, Adamante WDB, Mouriño JLP. Vitamin C and E supplemented diet influences the acute inflammatory response in Nile tilapia. Ciência Rural. 2008; 38: 213-218. https://doi.org/10.1590/S0103-84782008000100034

Adolph EF. Uptakes and uses of oxygen, from gametes to maturity: An overview. Respiration Physiology. 1983; 53(2): 135-160. https://doi.org/10.1016/0034-5687(83)90063-4

Low C, Wadsworth S, Burrells C, Secombes CJ. Expression of immune genes in turbot (Scophthalmus maximus) fed a nucleotide-supplemented diet. Aquaculture. 2003; 221(1-4): 23-40. https://doi.org/10.1016/S0044-8486(03)00022-X

Tengjaroenkul B, Smith BJ, Smith SA, Chatreewongsin U. Ontogenic development of the intestinal enzymes of cultured Nile tilapia, Oreochromis niloticus L. Aquaculture. 2002; 211(1-4): 241-251. https://doi.org/10.1016/S0044-8486(01)00888-2

Downloads

Published

2024-11-14

How to Cite

Lopes de Melo, C., Carvalho, I., Tank Fortunato, M. H., Santana Natel, A. ., do Nascimento, A. F., Mattos Pedreira, M., Ferreira Menezes, W. ., Santos Amorim, M. P. ., & Albers Koch, J. F. (2024). GROWTH PERFORMANCE, HEMATOLOGICAL AND HISTOLOGICAL PARAMETERS OF NILE TILAPIA LARVAE FED DIETS SUPPLEMENTED WITH B-GLUCANES AND NUCLEOTIDES. Acta Biologica Brasiliensia, 7(2), 254–278. https://doi.org/10.18554/acbiobras.v7i2.7883

Issue

Section

Artigos

Most read articles by the same author(s)