BIOFERTILIZANTE À BASE DE MICROALGAS TESTADO NA GERMINAÇÃO DE SEMENTES DE Lactuca sativa L. (ALFACE AMERICANA)

Authors

  • Rafael Araújo Oliveira Instituto Federal Goiano
  • Daniela Inácio Junqueira Instituto Federal Goiano
  • Rafael Ferreira dos Santos Instituto Federal de Educação, Ciência e Tecnologia Goiano - Campus Ceres

DOI:

https://doi.org/10.18554/acbiobras.v7i2.8011

Keywords:

algas, fertilizante biológico, sustentabilidade

Abstract

Este estudo aborda a produção de um biofertilizante à base de microalgas e testado na germinação de sementes de alface americana (Lactuca sativa L.). Amostras de algas foram coletadas e, em seguida, transferidas e cultivadas em meio de cultivo WC em frascos de vidro de 5L, recebendo ventilação e luz natural, de modo a estimular a floração. Após o crescimento da massa inicial e o atingimento da floração máxima, o conteúdo foi homogeneizado para o processamento direto. Em seguida, foram utilizados recipientes Gerbox, nos quais foram colocados dois papéis mata-borrão por caixa, umedecidos com 0, 3, 6 e 9 mL do biofertilizante e 13, 10, 7 e 4 mL de água destilada, correspondendo a quatro tratamentos com cinco repetições. Os recipientes foram então posicionados em uma câmara DBO, com um fotoperíodo de 12 horas e temperatura constante de 25 ºC. As leituras foram realizadas aos 4 e 7 dias após a instalação na câmara DBO. Não foram observadas significâncias estatísticas nos tratamentos com o biofertilizante à base de microalgas.

References

Tilman D, Cassman KG, Matson PA, Naylor R, Polasky S. Agricultural sustainability and intensive production practices. Nature. 2002; 418(6898): 671-677. https://doi.org/10.1038/nature01014.

Godfrey HCJ, Beddington JR, Crute IR, Haddad L, Lawrence D, Muir JF, Pretty J, Robinson S, Thomas SM, Toulmin C. Food Security: The Challenge of Feeding 9 Billion People. Science. 2010; 327(5967): 812-818. https://doi.org/10.1126/science.1185383.

Odegard IYR, Van Der Voet E. The future of food – Scenarios and the effect on natural resource use in agriculture in 2050. Ecological Economics. 2014; 97: 51-59. https://doi.org/10.1016/j.ecolecon.2013.10.005.

Margalith PZ. Production of ketocarotenoids by microalgae. Applied Microbiology Biotechnology. 1999; 51: 431-438. https://doi.org/10.1007/s002530051413.

Foley JA, Ramankutty N, Brauman KA, Cassidy ES, Gerber JS, Johnston M, Mueller ND, O’Connell C, Ray DK, West PC, Balzer C, Bennett EM, Carpenter SR, Hill J, Monfreda C, Polasky S, Rockström J, Sheehan J, Siebert S, Tilman D, Zaks DPM. Solutions for a cultivated planet. Nature. 2011; 478(7369): 337-342. https://doi.org/10.1038/nature10452.

Vessey JK. Plant growth promoting rhizobacteria as biofertilizers. Plant and Soil. 2003; 255(2): 571-586. https://doi.org/10.1023/A:1026037216893.

Pulz O, Gross W. Valuable products from biotechnology of microalgae. Applied Microbiology Biotechnology. 2004; 65: 635-648. https://doi.org/10.1007/s00253-004-1647-x.

García-Orellana Y, Soto G, Tafur V, Simbaña A, Tello E, Brito J. Efecto de un fertilizante orgánico microalgal en la germinación y crecimiento de plântulas de albahcaca (Ocimum basilicum L.). Revista Unellez de Ciencia y Tecnología. 2016; 34: 33-39.

Chapman RL. Algae: the world’s most important “plants” – an introduction. Mitigation and Adaptation Strategies for Global Change. 2013; 18: 5-12. https://doi.org/10.1007/s11027-010-9255-9.

Ammar EE, Aioub AAA, Elesawy AE, Karkour AM, Mouhamed MS, Amer AA, EL-Shershaby NA. Algae as bio-fertilizers.; between current situation and future prospective. Saudi Journal of Biological Sciences. 2022; 29(5): 3083-3096. https://doi.org/10.1016/j.sjbs.2022.03.020.

Tarakhovskaya ER, Maslov YI, Shishova MF. Phytohormones in algae. Russian Journal of Plant Physiology. 2007; 54: 163-170. https://doi.org/10.1134/S1021443707020021.

Faheed FA, Fattah ZA. Effect of Chlorella vulgaris as biofertiliser on growth parameters and metabolic aspects of lettuce plant. Journal of Agriculture and Social Sciences. 2008; 4(4): 165-169.

Gharib FAEL, Osama K, Sattar AMAE, Ahmed EZ. Impact of Chlorella vulgaris, Nannochloropsis salina and Arthrospira platensis as bio-stimulants on common bean plant growth, yield and antioxidant capacity. Scientific Reports. 2024; 14(1398). https://doi.org/10.1038/s41598-023-50040-4.

Yeh KL, Chang JC. Effects of cultivation conditions and media composition on cell growth and lipid productivity of indigenous microalga Chlorella vulgaris ESP-31. Bioresource Technology. 2012; 105: 120-127. https://doi.org/10.1016/j.biortech.2011.11.103.

Prabakaran G, Moovendhan M, Arumugam A, Matharasi A, Dineshkumar R, Sampathkumar P. Evaluation of chemical composition and in vitro antiinflammatory effect of marine microalgae Chlorella vulgaris. Waste and Biomass Valorization. 2018; 10: 3263-3270. https://doi.org/10.1007/s12649-018-0370-2.

Sudhakar MP, Kumar BR, Mathimani T, Arunkumar K. A review on bioenergy and bioactive compounds from microalgae and macroalgae-sustainable energy prospective. Journal of Cleaner Production. 2019; 228: 1320-1333. https://doi.org/10.1016/j.jclepro.2019.04.287.

Wild KJ, Trautmann A, Katzenmeyer M, Steingaß H, Posten C, Rodehutscord M. Chemical composition and nutritional characteristics for ruminants of the microalgae Chlorella vulgaris obtained using diferente cultivation conditions. Algal Research. 2019; 38. https://doi.org/10.1016/j.algal.2018.101385.

Stirk WA, Ördög V, Novák O, Rol?ík J, Strnad M, Bálint P, Van Staden J. Auxin and cytokinin relationship in 24 microalgal strains. Journal of Phycology. 2013; 49(3): 459-467. https://doi.org/10.1111/jpy.12061.

Guillard RRL, Lorenzen CJ. Yellow-green algae whith chlorophyllide c12. Journal of Phycology. 1972; 8(1): 10-14. https://doi.org/10.1111/j.1529-8817.1972.tb03995.x.

Chen CY, Yeh KL, Aisyah R, Lee DJ, Chang JS. Cultivation, photobioreactor design and harvesting of microalgae for biodiesel production: a critical review. Bioresource Technology. 2011; 102: 71-81. https://doi.org/10.1016/j.biortech.2010.06.159.

Morandi MAB, Alemida EG. Calibra: Contagem de esporos e calibração de suspensão fúngica. 2007.

BRASIL. Ministério da Agricultura, Pecuária e Abastecimento. Secretaria de Defesa Agropecuária. Regras para Análise de Sementes. 2009; 399 p.

Bumandalai O, Tserennadmid R. Effect of Chlorella vulgaris as a biofertilizer on germination of tomato and cucumber seeds. International Journal of Aquatic Biology. 2019; 7(2): 05-99. https://doi.org/10.22034/ijab.v7i2.582.

Ronga D, Biazzi E, Parati K, Carminati D, Tava A. Microalgal biostimulants and biofertilizers in crop productions. Agronomy. 2019; 9(4): 192-192. https://doi.org/10.3390/agronomy9040192.

Published

2024-10-01

How to Cite

Araújo Oliveira, R., Inácio Junqueira, D., & Ferreira dos Santos, R. (2024). BIOFERTILIZANTE À BASE DE MICROALGAS TESTADO NA GERMINAÇÃO DE SEMENTES DE Lactuca sativa L. (ALFACE AMERICANA). Acta Biologica Brasiliensia, 7(2), 151–168. https://doi.org/10.18554/acbiobras.v7i2.8011

Issue

Section

Artigos

Most read articles by the same author(s)