GROWTH KINETICS OF Bacillus amyloliquefasciens BIB 0129 IN DIFFERENT CONCENTRATIONS OF SUCROSE AND YEAST EXTRACT
DOI:
https://doi.org/10.18554/acbiobras.v8i2.8158Keywords:
Bacillus; Fermentation kinetics; Specific speeds; Sucrose; Yeast extract.Abstract
Microorganisms have been widely used for formulations of bioproducts, including bacteria of Bacillus genus. Among them we can mention the specie Bacillus amyloliquefaciens, a bacterium that is widely used in biotechnology and agriculture due to its ability to solubilize phosphate, fix nitrate and induce systemic resistance in plants. In industrial-scale fermentations, knowledge of the microorganism is extremely important, from its morphological aspects to its behavior, such as cultivation time, growth speeds, as well as its response to different media of cultivation. This work aimed to study the fermentation kinetics of Bacillus amyloliquefaciens strain BIB 0129, determining the specific growth rate (µx) and generation time, using two concentrations of sucrose and yeast extract. Using a concentration of 8.4 g.L-1 of substrates in the cultivation medium, the specific cell growth rate (µx) obtained was 0.2527 h-1. The generation time for the lowest concentration of substrates was 3.14 hours. At the end of 48 hours of fermentation, the final concentration of microorganisms was 1.10x109 CFU.mL-1. Using a concentration of 18 g.L-1 of substrates, the specific cell growth rate (µx) was 0.5312 h-1 and the generation time was 1.30 hours. The cell concentration after 48 hours was 2.32x 109 CFU.mL-1.
References
1. Parra JRP. Controle biológico na agricultura brasileira. Entomol. Commun., 1, 2019 https://doi.org/10.37486/2675-1305.ec01002.
2. Kashyap BK, Solanki MK, Pandey AK, Prabha S, Kumar P, Kumari B. Bacillus as plant growth promoting rhizobacteria (PGPR): A promising green agriculture technology. In Plant Health under Biotic Stress; Nature. Singapore Pte Ltd.: Singapore, 2019; pp. 219–236 https://doi.org/10.1007/978-981-13-6040-4_11.
3. Ngalimat MS, Yahaya RSR, Baharudin MMA, Yaminudin SM, Karin M, Ahmad AS, Sabri S. A review on the biotechnological applications of the operation group Bacillus amyloliquefaciens. Microorganisms 2021, 9, 614. https://doi.org/10.3390/ microorganisms9030614.
4. Kumar A, Kumar R, Kumari M, Goldar S. Enhancement of plant growth by using PGPR for a sustainable agriculture: A review. Int. J. Curr. Microbiol. Appl. Sci. 2020, 9, 152–165. https://doi.org/10.20546/ijcmas.2020.902.019.
5. Chowdhury SP, Uhl J, Grosch R, Alquéres S, Pittroff S, Dietel K, Schmitt-Kopplin P, Borriss R, Hartmann A. Cyclic lipopeptides of Bacillus amyloliquefaciens subsp. plantarum colonizing the lettuce rhizosphere enhance plant defense responses toward the bottom rot pathogen Rhizoctonia solani. Mol. Plant-microbe. Interact. 2015, 28, 984–995. https://doi.org/10.1094/MPMI-03-15-0066-R.
6. Li B, Li Q, Xu Z, Zhang N, Shen Q, Zhang R. Responses of beneficial Bacillus amyloliquefaciens SQR9 to different soilborne fungal pathogens through the alteration of antifungal compounds production. Front. Microbiol. 2014, 5, 636. https://doi.org/10.3389/fmicb.2014.00636.
7. Fan B, Wang C, Song X, Ding X, Wu L, Wu H, Gao X, Borriss R. Bacillus velezensis FZB42 in 2018: The Gram-positive model strain for plant growth promotion and biocontrol. Front. Microbiol. 2018, 9, 2491. https://doi.org/10.3389/fmicb.2018.02491.
8. Dunlap CA, Bowman MJ, Rooney AP. Iturinic lipopeptide diversity in the Bacillus subtilis species group—Important antifungals for plant disease biocontrol applications. Front. Microbiol. 2019, 10, 1794. https://doi.org/10.3389/fmicb.2019.01794.
9. Paz ICP, Santin RCM, Guimarães AM, Rosa OPP, Dias ACF, Quecine MC, Azevedo JL, Matsumura ATS. Eucalyptus growth promotion by endophytic Bacillus spp. Genet. Mol. Res. 2012. 11:3711–3720. doi: 10.4238/2012.August.17.9. http://dx.doi.org/10.4238/2012.August.17.9.
10. Tortora GJ, Funke BR, Case CL. Microbiologia. 10 Porto Alegre: ArtMed, 2012, 934 p.
11. Hiss H. 2001 Cinética de processos fermentativos. In: Schmidell W, Lima UA, Aquarone E, Borzani WR. Biotecnologia Industrial. São Paulo: Edgard Blücher. p. 93-122.
12. Bettiol W, Morandi MAB, Lucon CMM. Controle de qualidade e conformidade de produtos e fermentados à base de Bacillus spp.: proposta metodológica. 2022. Embrapa, Jaguariúna. http://www.infoteca.cnptia.embrapa.br/infoteca/handle/doc/1146275.
13. Lima FA. Produção de biossurfactantes por Bacillus amyloliquefaciens IT45. 2017. 97 f. Dissertação (Mestrado em Engenharia Química) - Universidade Federal de Uberlândia, Uberlândia, 2017. http://dx.doi.org/10.14393/ufu.di.2017.62.
14. Yan Z, Qun W, Yan C. Production of surfactin from waste distiller`s grains by co-culture fermentation of two Bacillus amyloliquefaciens staims. Bioresour. Technol., v. 235, p. 96-103, 2017. http://dx.doi.org/10.1016/j.biortech.2017.03.090.
15. Chien AC, Hill NS, Levin PA. Cell Size Control in Bacteria. Curr. Biol. 22, R340–R349, May 8, 2012. http://dx.doi.org/10.1016/j.cub.2012.02.032.
16. Schaechter M, Maaløe O, Kjeldgaard NO. Dependency on medium and temperature of cell size and chemical composition during balanced grown of Salmonella typhimurium. J. Gen. Microbiol.19, 592–606, 1958.
17. Kjeldgaard NO, Maaløe O, Schaechter M. The transition between different physiological states during balanced growth of Salmonella typhimurium. J. Gen. Microbiol. 19, 607–616, 1958.
18. Pierucci O, Helmstetter CE, Rickert M, Weinberger M, Leonard AC. Overexpression of the dnaA gene in Escherichia coli B/r: chromosome and minichromosome replication in the presence of rifampin. J. Bacteriol. 169, 1871–1877, 1987.
19. Sargent MG. Control of cell length in Bacillus subtilis. J.Bacteriol. 123, 7–19, 1975.
20. Anderson RKI, Jayaraman K. Influence of carbon and nitrogen sources on the growth and sporulation of Bacillus thuringiensis var galleriae for biopesticide production. Chem. Biochem. Eng. Q. 17 (3) 225-231, 2003.
21. Morais ER, Bonomi A. 2021. Modelagem matemática e simulação de bioprocessos. In: Alterthum F, Schmidell W, Lima UA, Moraes IO. Biotecnologia Industrial vol. 2. São Paulo: Blucher. p. 171-240.
22. Martín MC, Rodríguez ER, Suaréz MA, Rodríguez E, Pichardo T, Roque B, Capó YA. Efecto de diferentes medios de cultivo em el crecimiento y la actividad antifúngica de Bacillus pumilus CCIBP-C5. Biotecnologia Vegetal. Vol. 21. No. 2: 94-102, 2021.
23. Silva RN, Melo LFA, Finkler CLL. Optimization of the cultivation conditions of Bacillus licheniformis BCLLNF-01 for cellulase production. Biotechnol. Rep. 29, 2021. https://doi.org/10.1016/j.btre.2021.e00599.