Efeito fotossenssibilizador in vitro da violeta de genciana na terapia fotodinâmica sobre Candida albicans
DOI:
https://doi.org/10.18554/refacs.v6i2.2810Palavras-chave:
Fotoquimioterapia, Candida albicans, Terapia a laser, Violeta de genciana, Azul de metilenoResumo
Este estudo tem como objetivo avaliar a ação do corante violeta de genciana, in vitro, sobre Candida albicans, isolado ou como fotossensibilizante, em comparação ao azul de metileno na Terapia Fotodinâmica. Foi uma pesquisa experimental com abordagem quantitativa. A linhagem de Candida albicans ATCC 1106 foi inoculada obtendo-se um overnight de 1,37x104 UFC/ml. Foram adicionados 50µl da suspensão fúngica (overnight) em 18,0ml de caldo Saboraud. A esse conjunto foi adicionado o 0,2ml do corante da violeta genciana a 1%, foi plaqueado, esperou-se o tempo de pré-irradiação de 5 minutos e aplicou-se o laser vermelho. A dose aplicada foi de 100J/cm², com energia total de 3J, depois foram subcultivadas a 37°C em caldo Saboraud por 1 hora. Após este período, uma alíquota de 1,0 ml foi diluída em 9,0ml de solução salina 0,85% esterilizada. 0,1 ml dessa diluição foi plaqueada e semeada em ágar saboraud. As placas, em triplicata, foram incubadas em estufa para microrganismos a 37°C, e após 48h foi feita a contagem das UFCs/ml. Além da violeta genciana a 1% combinada ao laser, foram analisados os grupos: azul de metileno a 1% associado ao laser, azul de metileno a 1%, violeta genciana a 1%, e o laser sem adição de corantes. As análises foram realizadas no software IBM SPSS (21.0), utilizou-se o teste de Kruskal-Wallis (Mann-Whitney) e o teste de Friedman (Wilcoxon), adotando-se um nível de significância de ?=5%. Como resultado observou-se que a violeta genciana a 1% associada ao laser tem efeito importante contra Candida albicans na terapia fotodinâmica.
Referências
Donnelly RF, McCarron PA, Tunney MM. Antifungal photodynamic therapy. Microbiol Res. 2008; 163(1):1-12.
Karkowska-Kuleta J, Rapala-Kozik M, Kozik A. Fungi pathogenic to humans: molecular bases of virulence of Candida albicans, Cryptococcus neoformans and Aspergillus fumigatus. Acta Biochim Pol. 2009; 56(2):211-24.
Dai T, Fuchs BB, Coleman JJ, Prates RA, Astrakas C, Denis TGS, et al. Concepts and principles of photodynamic therapy as an alternative antinfungal discovery platform. Front Microbiol. 2012; 3:1-16.
Eggimann P, Garbino J, Pittet D. Epidemiology of Candida species infections in critically ill non-immunocompromised patients. Lancet Infect Dis. 2003; 3(11):685-702.
Pupo YM, Gomes GM, Santos EB, Chaves L, Michel MD, Koslowski Jr. VA et al. Susceptibility of Candida albicans to photodynamic therapy using methylene blue and toluidine blue as photosensitizing dyes. Acta Odontol Latinoam. 2011; 24(2):188-92.
Mitra S, Haidaris PHD, Snell SB, Giesselman BR, Hupsher SM, Foster TH. Susceptibility of Candida albicans to photodynamic therapy using methylene blue and toluidine blue as photosensitizing dyes. Lasers Surg Med. 2011; 43(4):324-32.
Lyon JP, Moreira LM, de Moraes PC, dos Santos FV, Resende MA. Photodynamic therapy for pathogenic fungi. Mycoses. 2011; 54(5):e265-71.
Grice EA, Segre JA. The human microbiome: our second genome. Annu Rev. Genomics Hum Genet. 2012; 13:151-70.
Pfaller MA, Diekema DJ. Epidemiology of invasive candidiasis: a persistent public health problem. Clin Microbiol Rev. 2007; 20(1):133-63.
Calzavara-Pinton PG, Rossi MT, Sala R. A retrospective analysis of real-life practice of off-label photodynamic therapy using methyl aminolevulinate (MAL-PDT) in 20 Italian dermatology departments. Part 2: oncologic and infectious indications. Photochem Photobiol Sci. [Internet]. 2013 [citado em 12 jan 2017]; 12(1): 158-65. DOI: 10.1039/c2pp25125f
Li DD, Xu Y, Zhang D-G, Quan H, Mylonakis E, Hu DD, et al. Fluconazole assists berberine to kill fluconazole-resistant Candida albicans. Antimicrob Agents Chemother. 2013; 57(12):6016-27.
Maver-Biscanin M, Mravak-Stipetic M, Jerolimov V, Biscanin A. Fungicidal effect of diode laser irradiation in patients with denture stomatitis. Lasers Surg Med. 2004; 35(4):259-62.
Queiroga AS, Trajano VN, Lima EO, Ferreira AF, Queiroga AS, Limeira FA Jr. In vitro photodynamic inactivation of Candida spp by different doses of low power laser light. Photodiagnosis Photodyn Ther. 2011; 8(4):332-6.
Kato IT, Prates RA, Sabino CP, Fuchs BB, Tegos GP, Mylonakis E et al. Antimicrobial photodynamic inactivation inhibits Candida albicans virulence factors and reduces In vivo pathogenicity. Antimicrob Agents Chemother. 2013; 57(1):445-51.
Pereira MSV, Siqueira-Júnior JP, Rodrigues E, Cavalcanti ML, Nascimento AE, Campos-Takaki GM. Evaluation of ultrastrutural changes induced by ofloxacin associated with cephalexin against human and bovine strains of staphylococcus aureus during post antibiotic effect (PAE). Int J Pharmacol Res. 2014; 1(1):15-21.
Dai T, Bil de Arce VJ, Tegos GP, Hamblin MR. Blue dye and red light, a dynamic combination for prophylaxis and treatment of cutaneous Candida albicans infections in mice. Antimicrob Agents Chemother. 2011; 55(12):5710-7.
Machado-de-Sena RM, Corrêa L, Kato IT, Prates RA, Senna AM, Santos CC et al. Photodynamic therapy has antifungal effect and reduces inflammatory signals in Candida albicans-induced murine vaginitis. Photodiagnosis Photodyn Ther. 2014; 11(3):275-82.
Calzavara-Pinton P, Rossi MT, Sala R, Venturini M. Photodynamic antifungal chemotherapy. Photochem Photobiol. 2012; 88(3):512-22.
Maisch T. A new strategy to destroy antibiotic resistant microorganisms: antimicrobial photodynamic treatment. Mini Rev Med Chem. 2009; 9(8):974-83.
Zeina B, Greenman J, Purcell WM, Das B. Killing of cutaneous microbial species by photodynamic therapy. Br J Dermatol. 2001; 144(2):274-8.
Dovigo LN, Pavarina AC, Ribeiro AP, Brunetti IL, Costa CA, Jacomassi DP et al. Investigation of the photodynamic effects of curcumin against Candida albicans. Photochem Photobiol. 2011; 87(4):895-903.
Mardh PA, Rodrigues AG, Genç M, Novikova N, Martinez-de-Oliveira J, Guaschino S. Facts and myths on recurrent vulvovaginal candidosis – a review on epidemiology, clinical manifestations, diagnosis, pathogenesis and therapy. Int J STD AIDS. 2002; 13(8):522-39.
Gomes-de-Elvas AR, Palmeira-de-Oliveira A, Gaspar C, Gouveia P, Palmeira-de-Oliveira R, Pina-Vaz C. et al. In vitro assessment of gentian violet anti-candida activity. Gynecologic Obstet Invest. 2012; 74(2):120-4.
Maley AM, Arbiser JL. Gentian violet: a 19th century drug re-emerges in the 21st century. Exp Dermatol. 2013; 22(12):775-80.
Jurevic RJ, Trabolsi RS, Mukherjee PK, Salata RA, Ghanoum MA. Identification of gentian violet concentration that does not stain oral mucosa, possesses anti-candidal activity and is well tolerated. Eur J Clin Microbiol Infect Dis. 2011; 30(5):629-33.
Traboulsi RS, Mukherjee PK, Chandra J, Salata RA, Jurevic R, Ghannoum MA. Gentian violet exhibits activity against biofilms formed by oral candida isolates obtained from HIV-infected patients. Antimicrob Agents Chemother. 2011; 55(6):3043-45.
Dörtbudak O, Haas R, Bernhart T, Mailath-Pokorny G. Lethal photosensitization for decontamination of implant surfaces in the treatment of peri-implantitis. Clin Oral Implants Res. 2001; 12(2):104-8.
Perni S, Prokopovich P, Pratten J, Parkin IP, Wilson M. Nanoparticles: heir potential use in antibacterial photodynamic therapy. Photochem Photobiol Sci. 2011; 10(5):712-720.
Sharon V, Fazel N. Oral Candidiasis and Angular Cheilits. Dermatol Ther. 2010; 23(3):230-42.
Carvalho GG, Felipe MP, Costa MS. The photodynamic effect of methylene blue and toluidine blue on Candida albicans is dependent on medium conditions. J Microbiol. 2009; 47(5):619-23.
Atalay MA, Koc AN, Demir G, Sav H. Investigation of possible virulence factors in Candida strains isolated from blood cultures. Niger J Clin Pract. 2015; 18(1):52-5.
Morales DK, Grahl N, Okegbe C, Dietrich LEP, Jacobs NJ, Hogan DA. Control of Candida albicans metabolism and biofilm formation by pseudomonas aeruginosa phenazines. MBio. 2013; 4(1):e00526-12.
Ford CB, Funt JM, Abbey D, Issi L, Guiducci C, Martinez DA et al. The evolution of drug resistance in clinical isolates of Candida albicans. Elife. 2015; 4:e00662.
Neppelenbroek KH, Machado AL, Pavarina AC, Massucato EM, Colombo AL, Vergani CE. Effectiveness of microwave disinfection of complete dentures on the treatment of Candida-related denture stomatitis. J Rehabil Oral. 2008; 25(3):232-44.
Vazquez JA, Sobel JD. Mucosalcandidiasis. Infect Dis Clin North Am. 2001; 16(4):793-820.
Teichert MC, Jones JW, Usacheva MN, Biel MA. Treatment of oral candidiasis with methylene blue-mediated photodynamic therapy in an immunodeficient murine model. Oral Surg Oral Med Oral Pathol Oral Radiol Endod. 2002; 93(2):155-60.
Oliveira CS, Turchiello R, Kowaltowski AJ, Indig GL, Baptista MS. Major determinants of photoinduced cell death: subcellular localization versus photosensitization efficiency. Free Radic Biol Med. 2011; 51(4): 824-33.
Mima EG, Pavarina AC, Ribeiro DG, Dovigo LN, Vergani CE, Bagnato VS. Effectiveness of photodynamic therapy for the inactivacion of candida SSP. on dentures: in vitro study. Photomed Laser Surg. 2011; 29(12):827-33.
Khademi H, Torabinia N, Allameh M, Jebreilamtigh HR. Comparative evaluation of photodynamic therapy induced by two different photosensitizers in rat experimental candidiasis. Dent Res J. 2014; 11(4):452-9.
Souza SC, Junqueira JC, Balducci I, Koga-Ito CY, Munin E, Jorge AO. Photosensitization of different Candida species by low power laser light. J Photochem Photobiol B. 2006; 83(1):34-8.
Downloads
Publicado
Como Citar
Edição
Seção
Licença
Este trabalho está licenciado sob uma licença Creative Commons Attribution-NonCommercial 4.0 International License.