PROPRIEDADES DO ÓLEO DE Carapa guianensis, Aubl., 1775 E SUAS APLICAÇÕES POTENCIAIS
DOI:
https://doi.org/10.18554/acbiobras.v7i1.7656Palavras-chave:
antioxidante, fenóis totais, produtos naturais, óleo-resina, citotoxicidadeResumo
O presente estudo teve por objetivo avaliar a composição química, a atividade sequestradora de radicais livres, a citotoxicidade do óleo puro de Carapa guianensis (andiroba), bem como, testar as diversas condições de reação de Folin-Ciocalteu para quantificação de fenóis totais em óleo e óleo-resina (in natura). A atividade citotóxica usou células epiteliais CHO-K1. A capacidade antioxidante foi pelos métodos de 2,2-difenil-1-picrilhidrazil (DPPH) e 2,2-azinobis-(3-etil-benzotiazolin-6-ácido sulfônico) (ABTS). O método de Folin-Ciocalteu foi modificado para avaliar fenóis totais em óleos e substâncias resinosas. Diferentes abordagens foram testadas, incluindo a adição de tween 80 e a substituição de solventes, a fim de analisar os fenóis totais presentes nos óleos-resinas testados. Quanto a composição química utilizou-se cromatografia em camada delgada e cromatografia de fase gasosa acoplada ao espectrômetro de massa. A análise da citotoxidade do óleo de andiroba não resultou perda significativa da função mitocondrial com porcentagem de células viáveis variando de 82 a 127% da viabilidade celular. O óleo de C. guianensis apresentou concentração inibitória (IC50) de 254,2 ± 10 mg/mL e 274,9 ± 6,19 mg/mL para DPPH e ABTS, respectivamente. Em fenóis totais, para aplicação em óleos e substâncias resinosas foi substituído progressivamente a água por solvente apolar, possibilitando a análise quantitativa de fenóis totais presentes nas amostras testadas. Na prospecção fitoquímica pode-se observar somente a presença de ácidos graxos com mancha no mesmo fator de retenção do padrão de ácido oleico. Os compostos identificados por cromatografia de fase gasosa acoplada ao espectrômetro de massa foram derivados de ácidos graxos, como o ácido oléico, ácido palmítico, ácido esteárico e o ácido linoléico com área relativa de 32.85; 26.06; 13.28; 11.79 %, respectivamente. Com base no estudo, conclui-se que o óleo de andiroba possui atividade antioxidante in vitro, não apresenta citotoxicidade em células epiteliais CHO-K1 e é composto principalmente por ácido oleico e palmítico. Os dados obtidos no estudo podem ser úteis para metodologias realizadas em meio aquoso.
Referências
Sousa, SF de; Paes, JB; Arantes, MDC; Martinez, Lopez Y; Brocco, VF. Análise física e avaliação do efeito antifúngico dos óleos de andiroba, copaíba e pinhão-manso. Floresta. 2018;48(2): 153-162. http://dx.doi.org/10.5380/rf.v48i2.52280.
Ramalho, MP; Santos, SLF; Castro, NM; Vasconcelos, LMO; Morais, ICO; Pessoa, CV. Plantas medicinais no processo de cicatrização de feridas: revisão de literatura. Rev. Expr. Catól. Saúde. 2018; 3(2).
Verruck, S; Prudencio, ES; Silveira SM da. Compostos bioativos com capacidade antioxidante e antimicrobiana em frutas. Revista do Congresso Sul Brasileiro de Engenharia de Alimentos. 2018; 4(1):111-124. https://doi.org/10.5965/24473650412018111.
Castelo-Branco, VN; Torres, AG. Capacidade antioxidante total de óleos vegetais comestíveis: determinantes químicos e sua relação com a qualidade dos óleos. Revista de Nutrição. 2011; 24(1):173-187. https://doi.org/10.1590/S1415-52732011000100017.
Pires, LKS; Grigolin Grisotto M; Fontes Grisotto R. O uso de plantas da Amazônia na produção de bioprodutos para tratamentos de pele. Revista de Investigação Biomédica. 2017; 9(1):78-88. https://doi.org/10.24863/rib.v9i1.91.
Lima J dos S. Formulações cosméticas contendo óleo de andiroba. Centro Universitário estadual da zona Oeste. 2018: 1-51. Disponível em: http://www.uezo.rj.gov.br/tcc/farmacia/J%C3%A9ssica-dos-Santos-Lima.pdf. Acesso em 22 dez. 2021.
Rufino, M do SM; Alves, RE; Brito, ES de; et al. Metodologia científica: determinação da atividade antioxidante total em frutas pela captura do radical livre ABTS. Comunicado técnico EMBRAPA. Published online 2007:1-4.
Blois, MS. Antioxidant determinations by the use of a stable free radical. Nature 1958 181:4617. 1958;181(4617): 1199-1200 https://doi.org/10.1038/1811199a0.
Ghafoor, K; Al Juhaimi, F; Özcan, MM; Uslu, N; Babiker, EE; Mohamed Ahmed IA. Total phenolics, total carotenoids, individual phenolics and antioxidant activity of ginger (Zingiber officinale) rhizome as affected by drying methods. LWT. 2020; 126:109354. https://doi.org/10.1016/j.lwt.2020.109354.
Brandão, CMM; Hass, V; Zago, PW; et al. Action of Arrabidaea chica extract on Candida albicans biofilms, cytotoxic effect on fibroblasts and keratinocytes, and on physical/mechanical porperties of poli(methylmethacrylate) resin. Research, Society and Development. 2021; 10(13): e292101320667-e292101320667. https://doi.org/10.33448/rsd-v10i13.20667.
Galter, IN; Matsumoto, ST; David, JA de O. Avaliação da água do Rio Itapemirim/ES?: aspectos abióticos e toxicogenéticos. Universidade Federal do Espírito Santo; 2016. Disponível em: https://repositorio.ufes.br/items/b7eb99b0-8968-43ce-a77a-04597fbcf24b. Acesso em: 03 fev. 2021.
Singleton, VL; Rossi, JA. Colorimetry of total phenolics with phosphomolybdic-phosphotungstic acid reagents. Am J Enol Vitic. 1965; 16 (3): 144-158. https://doi.org/10.5344/ajev.1965.16.3.144.
Wolff, SM; Silveira, AC da; Lazzarotto, M. Metodologia para extração de fenólicos totais e antioxidantes da erva-mate. Iniciação Científica Cesumar. 2019; 21(1):45-54. https://doi.org/10.17765/1518-1243.2019v21n1p45-54.
Mussi, MCM. Análise da atividade antimicrobiana dos óleos de copaíba (Copaifera Officinalis) e da Melaleuca (Melaleuca Alternifolia) Sobre Fusobacterium Nucleatum e Porphyromonas Gingivalis: determinação das concentrações inibitórias e bactericidas mínimas e efeito de concentrações subinibitórias sobre a agregação. Bauru/ SP. Faculdade de Odontologia de Bauru, Universidade de São Paulo. Disponível em: https://www.teses.usp.br/teses/disponiveis/25/25150/tde-06122011-101438/pt-br.php.
Wojtunik-Kulesza, KA; Drasar, PB; Khripach, VA. Approach to optimization of FRAP methodology for studies based on selected monoterpenes. Molecules 2020; 25: 5267. 2020; 25(22): 5267. https://doi.org/10.3390/molecules25225267.
Shigihara, TH; Pires, EF; De Assunção Justo D; et al. Otimização da extração de própolis verde pela atividade antifúngica e incorporação em biofilme de quitosana. Revista Univap. 2022; 28(59). https://doi.org/10.18066/revistaunivap.v28i59.4366.
Sobreir, RCB. Piptadenia Stipulacea (BENTH) Ducke: Investigação fitoquímica e ensaios toxicológicos in vitro e in vivo. Recife/PE. Universidade Federal de Pernambuco. 2019. Disponível em: https://repositorio.ufpe.br/handle/123456789/34243.
El-Sayed AM. The Pherobase: Database of pheromones and semiochemicals. Published 2022. Disponível em: https://www.pherobase.com/. Acesso em: 09 jan. 2023.
National Institute Of Standars And Technology. NIST Chemistry WebBook. Published 2018. DOI: https://doi.org/10.18434/T4D303.
Di Rienzo JA; Casanoves F.; Balzarini, MG; Gonzalez, L., Tablada, M; Robledo, CW. InfoStat versão 2011. Grupo InfoStat, FCA, Universidad Nacional de Córdoba, Argentina. Disponível em: https://www.scirp.org/reference/ReferencesPapers?ReferenceID=1463425. Acesso em: 05 jun. 2024.
Alves, ME; De Souza, O; Da M; et al. Influence of different extraction techniques on the antioxidant capacity of dehydrated watermelon rind. Research, Society and Development. 2021; 10(13): e323101321333-e323101321333. https://doi.org/10.33448/rsd-v10i13.21333.
Souza, DS. Caracterização e Avaliação da capacidade antioxidante da polpa liofilizada enriquecida com extrato Aquoso da semente de tamarindo (Tamarindus Indica). Campinas/SP. Universidade Estadual de Campinas. 2015. Disponível em: https://bv.fapesp.br/pt/dissertacoes-teses/137118/caracterizacao-e-avaliacao-da-capacidade-antioxidante-da-pol.
Milhomem-Paixão, SSR; Fascineli, ML; Roll, MM; Longo, JPF; Azevedo, RB; Pieczarka, JC; Salgado, HLC; Santos, AS; Grisolia, CK. The lipidome, genotoxicity, hematotoxicity and antioxidant properties of andiroba oil from the Brazilian Amazon. Genet Mol Biol. 2016; 39(2):248-256. https://doi.org/10.1590/1678-4685-GMB-2015-0098.
Araujo-Lima, CF; Fernandes AS; Gomes, EM; et al. Antioxidant activity and genotoxic assessment of crabwood (andiroba Carapa guianensis Aublet) seed oils. Oxid Med Cell Longev. 2018: 3246719. https://doi.org/10.1155/2018/3246719.
Wu Z; Li H; Yang, Y; Zhan Y; Tu D. Variation in the components and antioxidant activity of Citrus medica L. var. sarcodactylis essential oils at different stages of maturity. Ind Crops Prod. 2013; 46: 311-316. https://doi.org/10.1016/j.indcrop.2013.02.015.
Wanzeler, AMV; Júnior, SMA; Gomes, JT; et al. Therapeutic effect of andiroba oil (Carapa guianensis Aubl.) against oral mucositis: an experimental study in golden Syrian hamsters. Clin Oral Investig. 2018; 22(5): 2069-2079. https://doi.org/10.1007/s00784-017-2300-2.
Hamza, MA; Abou-Gamra, ZM; Ahmed, MA; Medien, HAA. The critical role of Tween 80 as a ‘green’ template on the physical properties and photocatalytic performance of TiO2 nanoparticles for Rhodamine B photodegradation. Journal of Materials Science: Materials in Electronics. 2020; 31(6): 4650-4661. https://doi.org/10.1007/s10854-020-03017-2.
Koivikko, R. Brown algal phlorotannins: Improving and applying chemical methods. 2008: 61. Disponível em: https://www.utupub.fi/handle/10024/36054. Acesso em: 05 mar. 2024.
Anjos, JC dos; Munhoz, MP; Silva, VN da; Tirapeli, KG; Pereira, AAF; Nakamune AC de MS. Estudo in vitro da atividade antioxidante de Hibiscus Sabdariffa L. Revista Saúde UniToledo. 2017; 1(1): 20-30.
Costa, MAF; Costa, M de FB. Replicação das pesquisas científicas no contexto da qualidade: contribuições para estudos em saúde. Revista Humanidades e Inovação. 2021; 8(44): 148-157.
Harb, TB; Torres, PB; Pires, JS; Santos, DY dos; Chow, F. Ensaio em microplaca do potencial antioxidante através do sistema quelante de metais para extratos de algas. São Paulo: Instituto de Biociências, Universidade de São Paulo: 2016.
Teixeira, FB; Silva, R de B; Lameira, OA; et al. Copaiba oil-resin (Copaifera reticulata Ducke) modulates the inflammation in a model of injury to rats’ tongues. BMC Complement Altern Med. 2017; 14(1):1-8. https://doi.org/10.1186/s12906-017-1820-2.
Novello, Z; Scapinello, J; Magro, JD; et al. Extraction, chemical characterization and antioxidant activity of andiroba seeds oil obtained from pressurized n-butane. Ind Crops Prod. 2015; 76:697-701. https://doi.org/10.1016/j.indcrop.2015.07.075.
Seck, I; Hosu A; Cimpoiu, C; et al. Phytochemicals content, screening and antioxidant/pro-oxidant activities of Carapa procera (barks) (Meliaceae). South African Journal of Botany. 2021; 137:369-376. https://doi.org/10.1016/j.sajb.2020.11.019.
Diby, LA; Katou SY; Dere, LAK; N’da PK; Tiahou, GG. Biochemical composition of the seed of Carapa procera (meliaceae) of Côte d’Ivoire. International Journal of Green and Herbal Chemistry. 2019; 8(3):333-342.
Maurmann, N; Lund DG; Pereira, DP; Pranke, P. Avaliação da composição química de um óleo de copaíba (Copaifera spp) e seu efeito em células-tronco mesenquimais. Rev med (São Paulo). 2022; 101(5):e-185868. doi: http://dx.doi.org/10.11606/issn.1679-9836.v101i5e-185868.
Palomer, X; Pizarro-Delgado, J; Barroso, E; Vázquez-Carrera, M. Palmitic and Oleic Acid: The Yin and Yang of Fatty Acids in Type 2 Diabetes Mellitus. Trends Endocrinol Metab. 2018; 29(3):178-190. https://doi.org/10.1016/j.tem.2017.11.009.
Rani, KNP; Neeharika, TSVR; Kumar, TP; Satyavathi, B; Sailu, C; Prasad, RBN. Kinetics of enzymatic esterification of oleic acid and decanol for wax ester and evaluation of its physico-chemical properties. J Taiwan Inst Chem Eng. 2015.