IMPACTS OF AGING ON THE MALE REPRODUCTIVE SYSTEM: HORMONAL, METABOLIC AND REPRODUCTIVE CHANGES

Autores

  • Ana Clara Melo de Andrade Rodrigues Universidade Federal do Triângulo Mineiro https://orcid.org/0009-0005-6015-2537
  • Fernanda Carolina Ribeiro Dias Universidade Federal do Triângulo Mineiro
  • Marcos de Lucca Moreira Gomes

DOI:

https://doi.org/10.18554/t0m6f474

Palavras-chave:

reproduction, testicles, epididymis, elderly, aging

Resumo

Aging gradually affects the male genital system due to profound hormonal and metabolic changes. The reduction in the proportion of testicular blood vessels reduces the supply of oxygen and other nutrients to the organ's parenchyma, increasing inflammatory conditions and oxidative stress, which can significantly affect sperm viability and morphology. Aging has an impact on lipid and protein metabolism, which can compromise sperm structure and functionality. In addition, sperm can accumulate significant changes in their DNA, increasing the chance of mutations with consequent harmful consequences for their offspring, such as autism spectrum disorders, schizophrenia, and attention deficit disorders. Therefore, understanding the male aging process and its consequences for men's reproductive health is of utmost importance for the prevention and treatment of diseases related to the male genital tract.

Referências

1. Hill M, T?ískala Z, Honc? P, Krej?í M, Kajzar J, Bi?íková M, Ond?ejíkova L, Jandova D, Sterzl I. Aging, hormones and receptors. Physiological Research. 2020; 69(Suppl. 2): S255–S272. https://doi.org/10.33549/physiolres.934523. DOI: https://doi.org/10.33549/physiolres.934523

2. Santiago J, Silva JV, Alves MG, Oliveira PF, Fardilha M, Salazar A. Testicular aging: an overview of ultrastructural, cellular and molecular alterations. 2018. https://doi.org/10.1093/gerona/gly082/4980823. DOI: https://doi.org/10.1093/gerona/gly082

3. Stucker S, de Angelis J, Kusumbe AP. Heterogeneity and dynamics of vasculature in the endocrine system during aging and disease. Frontiers in Physiology. 2021; 12. https://doi.org/10.3389/fphys.2021.624928. DOI: https://doi.org/10.3389/fphys.2021.624928

4. Frungieri MB, Calandra RS, Bartke A, Matzkin ME. Male and female gonadal aging: its impact on health span and life span. Mechanisms of Ageing and Development. 2021; 197. https://doi.org/10.1016/j.mad.2021.111519. DOI: https://doi.org/10.1016/j.mad.2021.111519

5. Aldahhan RA, Stanton PG. Heat stress response of somatic cells in the testis. Molecular and Cellular Endocrinology. 2021; 527. https://doi.org/10.1016/j.mce.2021.111216. DOI: https://doi.org/10.1016/j.mce.2021.111216

6. Golden A. From phenologs to silent suppressors: Identifying potential therapeutic targets for human disease. Molecular Reproduction and Development. 2017; 84(11): 1118–1132. https://doi.org/10.1002/mrd.22880. DOI: https://doi.org/10.1002/mrd.22880

7. Karvas RM, McInturf S, Zhou J, et al. Use of a human embryonic stem cell model to discover GABRP, WFDC2, VTCN1, and ACTC1 as markers of early first-trimester human trophoblast. Molecular Human Reproduction. 2020; 26(6): 425–440. https://doi.org/10.1093/mother/gaaa029. DOI: https://doi.org/10.1093/molehr/gaaa029

8. Björndahl L. The usefulness and significance of assessing rapidly progressive spermatozoa. Asian Journal of Andrology. 2010; 12(1): 33–35. https://doi.org/10.1038/aja.2008.50. DOI: https://doi.org/10.1038/aja.2008.50

9. Guerra-Carvalho B, Jarak I, Carvalho RA, et al. Metabolomics of human seminal fluid reveals aging-related increase in the amino acid content. Journal of Biological Regulators and Homeostatic Agents. 2024. https://doi.org/10.23812/j.biol.regul.homeost.agents.20243804.230. DOI: https://doi.org/10.23812/j.biol.regul.homeost.agents.20243804.230

10. Tarín JJ, García-Pérez MA, Hermenegildo C, Cano A. Changes in sex ratio from fertilization to birth in assisted-reproductive-treatment cycles. Reproductive Biology and Endocrinology. 2014; 12(1). https://doi.org/10.1186/1477-7827-12-56. DOI: https://doi.org/10.1186/1477-7827-12-56

11. Matzkin ME, Riviere E, Rossi SP, et al. ?-adrenergic receptors in the up-regulation of COX2 expression and prostaglandin production in testicular macrophages: Possible relevance to male idiopathic infertility. Molecular and Cellular Endocrinology. 2019; 498. https://doi.org/10.1016/j.mce.2019.110545. DOI: https://doi.org/10.1016/j.mce.2019.110545

12. Bisegna C, Gravina GL, Pierconti F, et al. Regulation of PDE5 expression in normal prostate, benign prostatic hyperplasia, and adenocarcinoma. Andrology. 2020; 8(2): 427–433. https://doi.org/10.1111/andr.12695. DOI: https://doi.org/10.1111/andr.12695

13. Aitken RJ. Male reproductive aging: a radical road to ruin. Human Reproduction. 2023; 38(10): 1861–1871. https://doi.org/10.1093/humrep/dead157. DOI: https://doi.org/10.1093/humrep/dead157

14. Nguyen-Powanda P, Robaire B. Oxidative stress and reproductive function in the aging male. Biology. 2020; 9(9): 1–15. https://doi.org/10.3390/biology9090282. DOI: https://doi.org/10.3390/biology9090282

15. Frungieri MB, Calandra RS, Bartke A, Matzkin ME. Aging and inflammation in the male reproductive tract. Andrologia. 2018; 50(11). https://doi.org/10.1111/and.13034. DOI: https://doi.org/10.1111/and.13034

16. Lustig L, Guazzone VA, Theas MS, et al. Pathomechanisms of autoimmune based testicular inflammation. Frontiers in Immunology. 2020; 11. https://doi.org/10.3389/fimmu.2020.583135. DOI: https://doi.org/10.3389/fimmu.2020.583135

17. Li Y, Zhou T, Su YF, et al. Prokineticin 2 overexpression induces spermatocyte apoptosis in varicocele in rats. Asian Journal of Andrology. 2020; 22(5): 500–506. https://doi.org/10.4103/aja.aja_109_19. DOI: https://doi.org/10.4103/aja.aja_109_19

18. Wang JJ, Wang SX, Tehmina, et al. Age-related decline of male fertility: Mitochondrial dysfunction and the antioxidant interventions. Pharmaceuticals. 2022; 15(5). https://doi.org/10.3390/ph15050519. DOI: https://doi.org/10.3390/ph15050519

19. Ulubay M, Ulu MB, Akdeniz E. The effect of aging on semen parameters in normozoospermic men: A cross-sectional study. International Journal of Reproductive BioMedicine. 2022; 20(11): 955–962. https://doi.org/10.18502/ijrm.v20i11.12363. DOI: https://doi.org/10.18502/ijrm.v20i11.12363

20. Dong S, Chen C, Zhang J, Gao Y, Zeng X, Zhang X. Testicular aging, male fertility, and beyond. Frontiers in Endocrinology. 2022; 13. https://doi.org/10.3389/fendo.2022.1012119. DOI: https://doi.org/10.3389/fendo.2022.1012119

21. Kaltsas A, Moustakli E, Zikopoulos A, et al. Impact of advanced paternal age on fertility and risks of genetic disorders in offspring. Genes. 2023; 14(2). https://doi.org/10.3390/genes14020486. DOI: https://doi.org/10.3390/genes14020486

22. Gao J, Yuan R, Yang S, et al. Age-related changes in human conventional semen parameters and sperm chromatin structure assay-defined sperm DNA/chromatin integrity. Reproductive BioMedicine Online. 2021; 42(5): 973–982. https://doi.org/10.1016/j.rbmo.2021.02.006. DOI: https://doi.org/10.1016/j.rbmo.2021.02.006

Downloads

Publicado

05-06-2025

Edição

Seção

Revisão da Literatura

Como Citar

IMPACTS OF AGING ON THE MALE REPRODUCTIVE SYSTEM: HORMONAL, METABOLIC AND REPRODUCTIVE CHANGES. Acta Biologica Brasiliensia, [S. l.], v. 8, n. 1, p. 290–300, 2025. DOI: 10.18554/t0m6f474. Disponível em: https://seer.uftm.edu.br/revistaeletronica/index.php/acbioabras/article/view/8273. Acesso em: 7 nov. 2025.