Impactos do Envelhecimento no Sistema Reprodutor Masculino: Alterações Hormonais, Metabólicas e Reprodutivas
DOI:
https://doi.org/10.18554/t0m6f474Keywords:
reprodução, testículo, epidídimo, idoso, envelhecimentoAbstract
O envelhecimento afeta gradualmente o sistema genital masculino, devido a profundas mudanças hormonais e metabólicas. A redução da proporção de vasos sanguíneos testiculares reduz o aporte de oxigênio e outros nutrientes para o parênquima do órgão, aumentando quadros inflamatórios e de estresse oxidativo, o que pode afetar sobremaneira a viabilidade e morfologia espermática. O envelhecimento causa impacto no metabolismo de lipídeos e proteínas, que podem comprometer a estrutura e funcionalidade do espermatozoide. Além disso, o espermatozoide pode acumular alterações significativas em seu DNA, aumentando a chance de mutações com consequentes consequências danosas para seus filhos, como desordens do espectro autista, esquizofrenia e desordens de déficit de atenção. Portanto, entender o processo de envelhecimento masculino e suas consequências para a saúde reprodutiva do homem é de suma importância para a prevenção e tratamento de doenças relacionadas ao trato genital masculino.
References
1. Hill M, T?ískala Z, Honc? P, Krej?í M, Kajzar J, Bi?íková M, Ond?ejíkova L, Jandova D, Sterzl I. Aging, hormones and receptors. Physiological Research. 2020; 69(Suppl. 2): S255–S272. https://doi.org/10.33549/physiolres.934523.
2. Santiago J, Silva JV, Alves MG, Oliveira PF, Fardilha M, Salazar A. Testicular aging: an overview of ultrastructural, cellular and molecular alterations. 2018. https://doi.org/10.1093/gerona/gly082/4980823.
3. Stucker S, de Angelis J, Kusumbe AP. Heterogeneity and dynamics of vasculature in the endocrine system during aging and disease. Frontiers in Physiology. 2021; 12. https://doi.org/10.3389/fphys.2021.624928.
4. Frungieri MB, Calandra RS, Bartke A, Matzkin ME. Male and female gonadal aging: its impact on health span and life span. Mechanisms of Ageing and Development. 2021; 197. https://doi.org/10.1016/j.mad.2021.111519.
5. Aldahhan RA, Stanton PG. Heat stress response of somatic cells in the testis. Molecular and Cellular Endocrinology. 2021; 527. https://doi.org/10.1016/j.mce.2021.111216.
6. Golden A. From phenologs to silent suppressors: Identifying potential therapeutic targets for human disease. Molecular Reproduction and Development. 2017; 84(11): 1118–1132. https://doi.org/10.1002/mrd.22880.
7. Karvas RM, McInturf S, Zhou J, et al. Use of a human embryonic stem cell model to discover GABRP, WFDC2, VTCN1, and ACTC1 as markers of early first-trimester human trophoblast. Molecular Human Reproduction. 2020; 26(6): 425–440. https://doi.org/10.1093/mother/gaaa029.
8. Björndahl L. The usefulness and significance of assessing rapidly progressive spermatozoa. Asian Journal of Andrology. 2010; 12(1): 33–35. https://doi.org/10.1038/aja.2008.50.
9. Guerra-Carvalho B, Jarak I, Carvalho RA, et al. Metabolomics of human seminal fluid reveals aging-related increase in the amino acid content. Journal of Biological Regulators and Homeostatic Agents. 2024. https://doi.org/10.23812/j.biol.regul.homeost.agents.20243804.230.
10. Tarín JJ, García-Pérez MA, Hermenegildo C, Cano A. Changes in sex ratio from fertilization to birth in assisted-reproductive-treatment cycles. Reproductive Biology and Endocrinology. 2014; 12(1). https://doi.org/10.1186/1477-7827-12-56.
11. Matzkin ME, Riviere E, Rossi SP, et al. ?-adrenergic receptors in the up-regulation of COX2 expression and prostaglandin production in testicular macrophages: Possible relevance to male idiopathic infertility. Molecular and Cellular Endocrinology. 2019; 498. https://doi.org/10.1016/j.mce.2019.110545.
12. Bisegna C, Gravina GL, Pierconti F, et al. Regulation of PDE5 expression in normal prostate, benign prostatic hyperplasia, and adenocarcinoma. Andrology. 2020; 8(2): 427–433. https://doi.org/10.1111/andr.12695.
13. Aitken RJ. Male reproductive aging: a radical road to ruin. Human Reproduction. 2023; 38(10): 1861–1871. https://doi.org/10.1093/humrep/dead157.
14. Nguyen-Powanda P, Robaire B. Oxidative stress and reproductive function in the aging male. Biology. 2020; 9(9): 1–15. https://doi.org/10.3390/biology9090282.
15. Frungieri MB, Calandra RS, Bartke A, Matzkin ME. Aging and inflammation in the male reproductive tract. Andrologia. 2018; 50(11). https://doi.org/10.1111/and.13034.
16. Lustig L, Guazzone VA, Theas MS, et al. Pathomechanisms of autoimmune based testicular inflammation. Frontiers in Immunology. 2020; 11. https://doi.org/10.3389/fimmu.2020.583135.
17. Li Y, Zhou T, Su YF, et al. Prokineticin 2 overexpression induces spermatocyte apoptosis in varicocele in rats. Asian Journal of Andrology. 2020; 22(5): 500–506. https://doi.org/10.4103/aja.aja_109_19.
18. Wang JJ, Wang SX, Tehmina, et al. Age-related decline of male fertility: Mitochondrial dysfunction and the antioxidant interventions. Pharmaceuticals. 2022; 15(5). https://doi.org/10.3390/ph15050519.
19. Ulubay M, Ulu MB, Akdeniz E. The effect of aging on semen parameters in normozoospermic men: A cross-sectional study. International Journal of Reproductive BioMedicine. 2022; 20(11): 955–962. https://doi.org/10.18502/ijrm.v20i11.12363.
20. Dong S, Chen C, Zhang J, Gao Y, Zeng X, Zhang X. Testicular aging, male fertility, and beyond. Frontiers in Endocrinology. 2022; 13. https://doi.org/10.3389/fendo.2022.1012119.
21. Kaltsas A, Moustakli E, Zikopoulos A, et al. Impact of advanced paternal age on fertility and risks of genetic disorders in offspring. Genes. 2023; 14(2). https://doi.org/10.3390/genes14020486.
22. Gao J, Yuan R, Yang S, et al. Age-related changes in human conventional semen parameters and sperm chromatin structure assay-defined sperm DNA/chromatin integrity. Reproductive BioMedicine Online. 2021; 42(5): 973–982. https://doi.org/10.1016/j.rbmo.2021.02.006.