STORAGE OF Handroanthus chrysotrichus (Mart. ex DC.) Mattos SEEDS IN DIFFERENT ENVIRONMENTS
DOI:
https://doi.org/10.18554/acbiobras.v8i2.8478Keywords:
seed conservation, native forest seeds, orthodox seedsAbstract
The increasing demand for native forest seeds has driven research on storage techniques that preserve viability and vigor. This study evaluated the behavior of Handroanthus chrysotrichus seeds stored in three environments: cold chamber (±11 °C), refrigerator (±2.5 °C), and bench (±25 °C), using polyethylene terephthalate (PET) bottles as containers. Germination Percentage (GP), Mean Germination Time (MGT), and Germination Speed Index (GSI) were analyzed every 60 days over a 300-day period. The results showed that storage in the refrigerator preserved seed viability throughout the experimental period, while the cold chamber maintained germination only up to 120 days and the bench environment showed total loss of viability after 60 days. The study reinforces the importance of low-temperature storage for preserving the quality of native forest seeds.
Este estudo avaliou o comportamento das sementes de chrysotrichus de chrysotrichus armazenadas em três ambientes: câmara fria (± 11 ° C), geladeira (± 2,5 ° C) e bancada (± 25 ° C), usando garrafas de tereftalato de polietileno (PET) como contêineres.References
1. Nunes FSM, Soares-Filho BS, Rajão R, Merry F. Enabling large-scale forest restoration in Minas Gerais state, Brazil. Environmental Research Letters. 2017; 12(4): 044022. https://doi.org/10.1088/1748-9326/aa6658.
2. Chazdon RL, Chaves RB, Calmon M, Siqueira LP, Junqueira RGP. Experiências de governança da restauração de ecossistemas e paisagens no Brasil. Estudos Avançados. 2022; 36 (106): 221-237. https://doi.org/10.1590/s0103-4014.2022.36106.013.
3. Krzyzanowski FC, Dias DCF dos S, França-Neto JB. Deterioração e vigor da semente. Seeds News. 2022; 25: 14. https://www.unifateb.edu.br/wp-content/uploads/2024/08/47-Deterioracao-e-vigor-da-semente.pdf.
4. Corbineau F. The effects of storage conditions on seed deterioration and ageing: How to improve seed longevity. Seeds. 2024; 3(1): 56–75. https://doi.org/10.3390/seeds3010005.
5. Corrêa BJS, Soares CRB, Iochims DA, Oliveira LM. Clethra scabra (Clethraceae): beneficiamento e armazenamento de sementes. Pesquisa Florestal Brasileira. 2024; 44: e2252. https://doi.org/10.4336/2024.pfb.44e202202252.
6. Freitas TAS de, Calhau MS, Sampaio JR, Gama DC. Sementes de espécies florestais nativas: aspectos do armazenamento. Revista Científica Intelletto. 2024; 9: e1780. https://revista.grupofaveni.com.br/index.php/revista-intelletto/article/view/1780.
7. De Vitis M, Hay FR, Dickie JB, Trivedi C, Choi J, Fiegener R. Seed storage: maintaining seed viability and vigor for restoration use. Restoration Ecology. 2020; 28: S249-S255. https://doi.org/10.1111/rec.13174.
8. Chandrasekaran U, Zhao X, Luo X, Wei S, Shu K. Endosperm weakening: the gateway to a seed's new life. Plant Physiology and Biochemistry. 2022; 178: 31–39. https://doi.org/10.1016/j.plaphy.2022.02.016.
9. Leprince O, Pellizzaro A, Berriri S, Buitink J. Late seed maturation: drying without dying. Journal of Experimental Botany. 2017; 68(4): 827–841. https://doi.org/10.1093/jxb/erw363.
10. Campos TS, Vieira GR, Souza AMB, Santos CHB, Rigobelo EC, Pivetta KFL. Rhizobacteria increase the growth and quality of Handroanthus chrysotrichus (Mart. ex DC.) Mattos seedlings. Revista Árvore. 2024; 48: e4814. https://doi.org/10.53661/1806-9088202448263634.
11. Silva DP da, Santos SGF dos, Almeida VG, Rodovalho RS, Vale LSR. Physiological potential of pigeon pea seeds under packaging, drying and storage conditions. Research, Society and Development. 2020; 9(11): e96791110517. https://doi.org/10.33448/rsd-v9i11.10517.
12. Ministério da Agricultura e Pecuária (Brasil). Regras para análise de sementes – RAS. Brasília, DF: MAPA; 2024. https://wikisda.agricultura.gov.br/pt-br/Laborat%C3%B3rios/Metodologia/Sementes/RAS_2024.
13. Cipriani VB, Garlet J, Arante VT. Superação de dormência e caracterização biométrica em sementes de Schefflera morototoni (Aubl.) Maguire et al. Revista Espacios. 2016; 37(31). https://www.revistaespacios.com/a16v37n31/16373118.html.
14. Junior MJVL, Bastos LLS, Romero FMB, Mendes AMS. Eficácia de métodos pré-germinativos na superação da dormência de sete espécies arbóreas nativas da Amazônia. OLEL. 2024; 22(12): e8176. https://doi.org/10.55905/oelv22n12-102.
15. Santos CS, de Siqueira CG, Meiado MV. Desiccation sensitivity of fresh and germinating seeds of Tabebuia aurea: physiological and biochemical implications. Acta Physiologiae Plantarum. 2024; 46(5): 58. https://doi.org/10.1007/s11738-024-03676-2.
16. Adetunji AE, Adetunji TL, Varghese B, Sershen, Pammenter NW. Oxidative stress, ageing and methods of seed invigoration: an overview and perspectives. Agronomy. 2021; 11(12): 2369. https://doi.org/10.3390/agronomy11122369.
17. Silva JJ, Alencar SS, Gomes RA, Matias JR, Pelacani CR, Dantas BF. Conservation and physiological quality of Handroanthus spongiosus (Rizzini) S. Grose (Bignoniaceae) seeds. Journal of Seed Science. 2022; 44: e202244025. https://doi.org/10.1590/2317-1545v44257812.
18. Bhattarai B, Nuttall JG, Li M, Suleria HAR, Wallace AJ, Fitzgerald GJ, Walker CK. Storage temperature and grain moisture effects on phenolic compounds as a driver of seed coat darkening in red lentil. Agronomy. 2024; 14(4): 705. https://doi.org/10.3390/agronomy14040705.