EFEITOS TOXICOGENÉTICOS E BIOQUÍMICOS DA ÁGUA E DO SEDIMENTO DE UMA LAGOA COSTEIRA (ES/BRASIL) AVALIADOS COM ALLIUM CEPA

Authors

  • Kristian Rodolfo Santos Universidade Federal do Espirito Santo
  • Iasmini Nicoli Galter Universidade Federal do Espirito Santo
  • Sara Nascimento dos Santos Universidade Federal do Espirito Santo
  • Francielen Barroso Aragão Universidade Federal do Espirito Santo
  • Mylena Boeque Lascola Universidade Federal do Espirito Santo
  • Iara da Costa Souza Universidade Federal de São Carlos
  • Stéfano Zorzal Almeida Universidade Federal do Espirito Santo
  • Magdalena Victoria Monferrán National University of Córdoba
  • Daniel Alberto Wunderlin National University of Córdoba
  • Marisa Narciso Fernandes Universidade Federal de São Carlos
  • Silvia Tamie Matsumoto Universidade Federal do Espirito Santo

DOI:

https://doi.org/10.18554/acbiobras.v8i2.8641

Keywords:

Contaminação antropogênica, genotoxicidade, mutagenicidade, modelo vegetal

Abstract

A ocorrência de metais em ambientes aquáticos é natural e essencial para várias funções metabólicas. No entanto, quando em excesso devido à contaminação, esses elementos podem causar efeitos tóxicos. A Lagoa Mãe-Bá, localizada entre os municípios de Guarapari e Anchieta, no Espírito Santo, sofre impactos antropogénicos desde a década de 1970, com o fechamento de sua conexão com o mar e a instalação de um reservatório para processamento de minério de ferro. O objetivo deste estudo foi avaliar a qualidade ambiental da lagoa através da análise da água, do elutriado e do sedimento solubilizado, coletados em três estações de amostragem, utilizando o bioensaio Allium cepa. Os resultados revelaram fitotoxicidade nas três estações na primeira campanha; citotoxicidade no elutriado da estação 1 e na água solubilizada das estações 2 e 3 na segunda campanha; genotoxicidade na água da estação 1 na primeira campanha e na água solubilizada das estações 2 e 3 na segunda campanha; bem como mutagenicidade em várias amostras. Também foram observadas alterações nas enzimas de defesa antioxidante, como a peroxidação lipídica e a glutationa S-transferase, bem como o acúmulo de metais nas raízes das sementes expostas, indicando um risco potencial para a biota local.

References

1. Silva AC, Azevedo IHS, Gonçalves MV, Milazzo ADD, Cruz MJ, Nascimento SAM. Limnological parameters and metals concentrations in water in three lagoons of the metropolitan region of Salvador, Bahia, Brazil. Pesquisas em Geociências. 2021; 48(4). https://doi.org/10.22456/1807-9806.112264.

2. Liu S, Shi J, Wang J, Dai Y, Li H, Li J, Ding D, Jiang F, Hou Y, Xie L, Zhang P. Interactions between microplastics and heavy metals in aquatic environments: a review. Frontiers in Microbiology. 2021; 12: 652520. https://doi.org/10.3389/fmicb.2021.652520.

3. Akinboro A, Mohammed K, Rathnasamy S, Muniandy VR. Genotoxicity assessment of water samples from the Sungai Dua River in Pulau Pinang, Malaysia, using the Allium cepa test. Tropical Life Sciences Research. 2011; 22(2): 23.

4. Fernandes TC, Mazzeo DEC, Marin-Morales MA. Mechanism of micronuclei formation in polyploidizated cells of Allium cepa exposed to trifluralin herbicide. Pesticide Biochemistry and Physiology. 2007; 88: 252-259. https://doi.org/10.1016/j.pestbp.2006.12.003.

5. Camargo Filho CB, Santos AR, Ferrari JL, Preto BDL, Kunz SH, Senhorelo AP, Rossi Junior JL. Evaluating the trace element concentration in sediments and assessing their genotoxicity in ichthyofauna of a coastal lagoon in southeastern Brazil. Diversity. 2022; 14(2): 151. https://doi.org/10.3390/d14020151.

6. Pereira AA, Mendonça ASF, Andrade Filho MC. Qualitative aspects of coastal lagoon waters and their influencing factors – case study: Mãe-Bá Lagoon, Espírito Santo. Revista Brasileira de Recursos Hídricos. 2005; 11(1): 63-77.

7. Lopes LMN. O rompimento da barragem de Mariana e seus impactos socioambientais. Sinapse Múltipla. 2016; 5(1): 1-1.

8. Tschaen R, Mello FC, Rosa TCS. Neoextrativismo e desastre da Samarco: construção histórica da vulnerabilidade minério-dependente em Anchieta (ES, Brazil). Ambiente & Sociedade. 2021; 24. https://doi.org/10.1590/1809-4422asoc20190226r2vu2021L3AO.

9. Caetano ML. Os desafios da retoma operacional da Samarco: caso Complexo Germano. 2021.

10. Galter IN, Duarte ID, Malini M, Aragão FB, Oliveira Martins I, Rocha LD, Matsumoto EST. Water assessment of the Itapemirim River/Espírito Santo (Brazil): abiotic and toxicogenetic aspects. Environmental Science and Pollution Research. 2021; 28: 10175-10191. https://doi.org/10.1007/s11356-020-11116-0.

11. Duarte ID, Rocha LD, Bonomo MM, Morozesk M, Coelho J, Dias MC, Matsumoto ST. Cytogenetic responses of Allium cepa L. after exposure to contaminated pond waters. Revista Brasileira de Biociências. 2017; 15(1): 1-6.

12. Bertan AS, Baumbach FP, Tonial IB, Pokrywiecki TS, Düsman E. Assessment of phytoremediation potential of Allium cepa L. in raw sewage treatment. Revista Brasileira de Biologia. 2020; 80: 431-436. https://doi.org/10.1590/1519-6984.214278.

13. Soares LM, Coldebella PF, Frigo JP. Water quality assessment of Brazilian rivers using Allium cepa meristematic cells as a bioindicator: an integrative review. Brazilian Journal of Development. 2021; 7(1): 6983-6999. https://doi.org/10.34117/bjdv7n1-473.

14. Bernardes PM, Andrade-Vieira LF, Aragão FB, Ferreira A, Silva Ferreira MF. Toxicidade de difenoconazol e tebuconazol em Allium cepa. Water Air and Soil Pollution. 2015; 226: 1-11. https://doi.org/10.1007/s11270-015-2462-y.

15. Andrade-Vieira LF, Salabert de Campos JM, Davide LC. Effects of spent pot liner on mitotic activity and nuclear DNA content in meristematic cells of Allium cepa. Journal of Environmental Management. 2012; 107: 140-146. https://doi.org/10.1016/j.jenvman.2012.04.008.

16. Fiskesjö G. The Allium test as a standard in environmental monitoring. Hereditas. 1985; 102(1): 99-112. https://doi.org/10.1111/j.1601-5223.1985.tb00471.x.

17. Aragão FB, Duarte ID, Fantinato DE, Galter IN, Silveira GL, Reis GB, Matsumoto ST. Toxicogenetic of tebuconazole based fungicide through Lactuca sativa bioassays. Ecotoxicology and Environmental Safety. 2021; 213: 111985. https://doi.org/10.1016/j.ecoenv.2021.111985.

18. Santos T, Sommaggio LRD, Marin-Morales MA. Phyto-genotoxicity assessment of different associations between sludges from water and sewage treatment plants, before and after the bioremediation process. Environmental Science and Pollution Research. 2022; 29(26): 40029-40040. https://doi.org/10.1007/s11356-022-18820-z.

19. Lima MV, Morais Guedes C, Abreu MC, Peron AP. Analysis of the cytotoxicity and genotoxicity of Hibiscus sabdariffa L. in natura and industrialized, and comparison of the toxicity between the analyzed forms of the plant. Multitemas. 2018; 55: 121-132. https://doi.org/10.20435/multi.v23i55.1838.

20. García-Medina S, Galar-Martínez M, Gómez-Oliván LM, Torres-Bezaury RMC, Islas-Flores H, Gasca-Pérez E. The relationship between cyto-genotoxic damage and oxidative stress produced by emerging pollutants on a bioindicator organism (Allium cepa): the carbamazepine case. Chemosphere. 2020; 253: 126675. https://doi.org/10.1016/j.chemosphere.2020.126675.

21. CEMADEN. National Center for Natural Disaster Monitoring and Alerts. Interactive Map of Cemaden's Observational Network for Natural Disaster Risk Monitoring. 2023. Available at: http://www2.cemaden.gov.br/mapainterativo/#

. Accessed on February 26, 2024.

22. Lascola MB, Santos KR, Santos SN, Costa Souza I, Fernandes MN, Matsumoto ST. Avaliação toxicogenética de amostras de água para uso em ensaios laboratoriais. Acta Biologica Brasiliensia. 2024; 7(2): 58-67.

23. Aragão FB, Queiroz VT, Ferreira A, Costa AV, Pinheiro PF, Carrijo TT, Andrade-Vieira LF. Phytotoxicity and cytotoxicity of Lepidaploa rufogrisea (Asteraceae) extracts in the plant model Lactuca sativa (Asteraceae). Revista de Biología Tropical. 2017; 65: 435-443.

24. Feulgen R, Rossenbeck H. Mikroskopisch-chemischer Nachweis einer Nucleinsäure vom Typus der Thymonucleinsäure und die darauf beruhende elektive Färbung von Zellkernen in mikroskopischen Präparaten. Biochemische Zeitschrift. 1924; 135(5-6): 203-248. https://doi.org/10.1515/bchm2.1924.135.5-6.203.

25. Malini M, Marin-Morales MA, Mantovani MS, Jamal CM, Nati N, Passos TS, Matsumoto ST. Determination of the antimutagenicity of an aqueous extract of Rhizophora mangle L. (Rhizophoraceae), using in vivo and in vitro test systems. Genetics and Molecular Biology. 2010; 33: 176-181. https://doi.org/10.1590/S1415-4757200900500010626.

26. Leme DM, Marin-Morales MA. Chromosome aberration and micronucleus frequencies in Allium cepa cells exposed to petroleum polluted water—a case study. Mutation Research/Genetic Toxicology and Environmental Mutagenesis. 2008; 650 (1): 80-86. https://doi.org/10.1016/j.mrgentox.2007.10.006.

27. Souza IC, Duarte ID, Pimentel NQ, Rocha LD, Morozesk M, Bonomo MM, Fernandes MN. Matching metal pollution with bioavailability, bioaccumulation and biomarkers response in fish (Centropomus parallelus) resident in neotropical estuaries. Environmental Pollution. 2013; 180: 136-144. https://doi.org/10.1016/j.envpol.2013.05.017.

28. Souza IDC, Morozesk M, Bonomo MM, Azevedo VC, Sakuragui MM, Elliott M, Fernandes MN. Differential biochemical responses to metal/metalloid accumulation in organs of an edible fish (Centropomus parallelus) from neotropical estuaries. Ecotoxicology and Environmental Safety. 2018; 161: 260-269.

29. Bradford MM. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry. 1976; 72: 248-254. https://doi.org/10.1016/0003-2697(76)90527-3.

30. McCord JM, Fridovich I. Superoxide dismutase: an enzymic function for erythrocuprein (hemocuprein). Journal of Biological Chemistry. 1969; 244: 6049-6055. https://doi.org/10.1016/S0021-9258(18)63504-5.

31. Habig WH, Jakoby WB. Assays for differentiation of glutathione S-Transferases. Methods in Enzymology. 1981; 77: 398-405. https://doi.org/10.1016/S0076-6879(81)77053-8.

32. Jiang ZY, Woollard AC, Wolff SP. Measurement of lipid hydroperoxide by Fe2+ oxidation in the presence of xylenol orange. Comparison with the TBA assay and an iodometric method. Lipids. 1991; 26(10): 853-856. https://doi.org/10.1007/BF02536169.

33. Liu S, Shi J, Wang J, Dai Y, Li H, Li J, Ding D, Jiang F, Hou Y, Xie L, Zhang P. Interactions between microplastics and heavy metals in aquatic environments: a review. Frontiers in Microbiology. 2021; 12: 652520. https://doi.org/10.3389/fmicb.2021.652520.

34. Ajewole OA, Ikhimiukor OO, Adelowo OO. Heavy metal (Cu and Zn) contamination of pond sediments and co-occurrence of metal and antibiotic resistance in Escherichia coli from Nigerian aquaculture. International Journal of Environmental Studies. 2021; 78(5): 773-784. https://doi.org/10.1080/00207233.2020.1804741.

35. Yan S, Subramanian SB, Tyagi RD, Surampalli RY, Zhang TC. Emerging contaminants of environmental concern: source, transport, fate, and treatment. Practice Periodical of Hazardous, Toxic, and Radioactive Waste Management. 2010; 14(1): 2-20. https://doi.org/10.1061/(ASCE)HZ.1944-8376.0000015.

36. Iwuozor KO, Oyekunle IP, Oladunjoye IO, Ibitogbe EM, Olorunfemi TS. A review on the mitigation of heavy metals from aqueous solution using sugarcane bagasse. Sugar Tech. 2022; 24(4): 1167-1185. https://doi.org/10.1007/s12355-021-01051-w.

37. Wardhani E, Roosmini D, Notodarmojo S. Status of heavy metal in sediment of Saguling Lake, West Java. IOP Conference Series: Earth and Environmental Science. 2017; 60(1): 012035. https://doi.org/10.1088/1755-1315/60/1/012035.

38. Francisco LFV, Amaral Crispim B, Spósito JCV, Solórzano JCJ, Maran NH, Kummrow F, Barufatti A. Metals and emerging contaminants in groundwater and human health risk assessment. Environmental Science and Pollution Research. 2019; 26: 24581-24594. https://doi.org/10.1007/s11356-019-05662-5.

39. Montagner CC, Vidal C, Acayaba RD. Contaminantes emergentes em matrizes aquáticas do Brasil: cenário atual e aspectos analíticos, ecotoxicológicos e regulatórios. Química Nova. 2017; 40(9): 1094-1110.

40. Célico AS. Influence of organic fertilization on the quality of water used for irrigating vegetables. 2015.

41. Alberts B, Johnson A, Lewis J, Morgan D, Raff M, Roberts K, Hunt T. Biologia molecular da célula. 6ª ed. Porto Alegre: Artmed; 2017.

42. Blaby-Haas CE, Merchant SS. The ins and outs of algal metal transport. Biochimica et Biophysica Acta Molecular Cell Research. 2012; 1823 (9): 1531-1552. https://doi.org/10.1016/j.bbamcr.2012.04.010.

43. Olaifa FE, Ayodele IA. Presence of hydrocarbons and heavy metals in some fish species in the Cross River, Nigeria. African Journal of Livestock Extension. 2004; 3: 90-95.

44. Alaguprathana M, Poonkothai M, Al-Ansari MM, Al-Humaid L, Kim W. Cytogenotoxicity assessment in Allium cepa roots exposed to methyl orange treated with Oedogonium subplagiostomum AP1. Environmental Research. 2022; 213: 113612. https://doi.org/10.1016/j.envres.2022.113612.

45. Matsumoto H. Cell biology of aluminum toxicity and tolerance in higher plants. International Review of Cytology. 2000; 200: 1-46. https://doi.org/10.1016/S0074-7696(00)00001-2.

46. Neto ARD, Ambrósio AS, Wolowski M, Westin TB, Govêa KP, Carvalho M, Barbosa S. Negative effects on photosynthesis and chloroplast pigments exposed to lead and aluminum: a meta-analysis. Cerne. 2020; 26: 232-237. https://doi.org/10.1590/01047760202026022711.

47. Hemachandra CK, Pathiratne A. Assessing toxicity of copper, cadmium and chromium levels relevant to discharge limits. Bulletin of Environmental Contamination and Toxicology. 2015; 94: 199-203. https://doi.org/10.1007/s00128-014-1373-8.

48. Silveira GL, Lima MGF, Dos Reis GB, Palmieri MJ, Andrade-Vieira LF. Toxic effects of environmental pollutants: Comparative investigation using Allium cepa L. and Lactuca sativa L. Chemosphere. 2017; 178: 359-367. https://doi.org/10.1016/j.chemosphere.2017.03.048.

49. Masood F, Malik A. Cytotoxic and genotoxic potential of tannery waste contaminated soils. Science of the Total Environment. 2013; 444: 153-160. https://doi.org/10.1016/j.scitotenv.2012.11.049.

50. Rajeshwari A, Kavitha S, Alex SA, Kumar D, Mukherjee A, Chandrasekaran N, Mukherjee A. Cytotoxicity of aluminum oxide nanoparticles on Allium cepa root tip effects of oxidative stress generation and biouptake. Environmental Science and Pollution Research. 2015; 22: 11057-11066. https://doi.org/10.1007/s11356-015-4355-4.

51. Fusconi A, Repetto O, Bona E, Massa N, Gallo C, Dumas-Gaudot E, Berta G. Effects of cadmium on meristem activity and nucleus ploidy in roots of Pisum sativum L. cv. Frisson seedlings. Environmental and Experimental Botany. 2006; 58(1-3): 253-260. https://doi.org/10.1016/j.envexpbot.2005.09.008.

52. Becaro AA, Siqueira MC, Puti FC, et al. Cytotoxic and genotoxic effects of silver nanoparticle/carboxymethyl cellulose on Allium cepa. Environmental Monitoring and Assessment. 2017; 189: 352. https://doi.org/10.1007/s10661-017-6062-8.

53. Kisurina-Evgenieva OP, Sutiagina OI, Onishchenko GE. Biogenesis of micronuclei. Biochemistry (Moscow). 2016; 81: 453-464. https://doi.org/10.1134/S0006297916050035.

54. Tundisi JG, Matsumura-Tundisi T. Limnologia. São Paulo: Oficina de Textos; 2008

55. Cervantes C, Campos-García J, Devars S, Gutiérrez-Corona F, Loza-Tavera H, Torres-Guzmán JC, Moreno-Sánchez R. Interactions of chromium with microorganisms and plants. FEMS Microbiology Reviews. 2001; 25(3): 335-347. https://doi.org/10.1111/j.1574-6976.2001.tb00581.x.

56. Zayed AM, Terry N. Chromium in the environment: factors affecting biological remediation. Plant Soil. 2003; 249: 139-156. https://doi.org/10.1023/A:1022504826342.

57. Matsumoto ST, Mantovani MS, Malaguttii MIA, Dias AL, Fonseca IC, Marin-Morales MA. Genotoxicity and mutagenicity of water contaminated with tannery effluents, as evaluated by the micronucleus test and comet assay using the fish Oreochromis niloticus and chromosome aberrations in onion root-tips. Genetics and Molecular Biology. 2006; 29: 148-158. https://doi.org/10.1590/S1415-47572006000100028.

58. Panda SK, Mahapatra S, Patra HK. Chromium toxicity and water stress simulation effects in intact senescing leaves of greengram (Vigna radiata L. var Wilckzeck K851). In: Advances in stress physiology of plants. New Delhi: Scientific Publishers; 2002. p. 129-136.

59. Kwankua W, Sengsai S, Muangphra P, Euawong N. Screening for plants sensitive to heavy metals using cytotoxic and genotoxic biomarkers. Agriculture and Natural Resources. 2012; 46(1): 10-23.

60. Gilletto B. Nickel named. Allergen of the Year. ACDS adds to list of substances warranting more attention. Dermatol Times. 2008; 4: 15-16.61.

61. Sagner S, Kneer R, Wanner G, Cosson JP, Deus-Neumann B, Zenk MH. Hyperaccumulation, complexation and distribution of nickel in Sebertia acuminata. Phytochemistry. 1998; 47 (3): 339-347. https://doi.org/10.1016/S0031-9422(97)00593-1.

62. Colombo M, Brown KA, De Vera J, Bergquist BA, Orians KJ. Trace metal geochemistry of remote rivers in the Canadian Arctic Archipelago. Chemical Geology. 2019; 525: 479-491. https://doi.org/10.1016/j.chemgeo.2019.08.006.

63. Akbaba GB. Toxicity assessment of zinc sulfate: A commonly used compound. Toxicology and Industrial Health. 2020; 36(10): 779-787. https://doi.org/10.1177/0748233720944771.

64. El-Ghamery AA, El-Kholy MA, Abou El-Yousser MA. Evaluation of cytological effects of Zn2+ in relation to germination and root growth of Nigella sativa L. and Triticum aestivum L. Mutation Research/Genetic Toxicology and Environmental Mutagenesis. 2003; 537(1): 29-41. https://doi.org/10.1016/S1383-5718(03)00052-4.

65. Shaymurat T, Gu J, Xu C, Yang Z, Zhao Q, Liu Y, Liu Y. Phytotoxic and genotoxic effects of ZnO nanoparticles on garlic (Allium sativum L.): a morphological study. Nanotoxicology. 2012; 6(3): 241-248. https://doi.org/10.3109/17435390.2011.570462.

66. Santos EF, Santini JMK, Paixão AP, Júnior EF, Lavres J, Campos M, dos Reis AR. Physiological highlights of manganese toxicity symptoms in soybean plants: Mn toxicity responses. Plant Physiology and Biochemistry. 2017; 113: 6-19.

67. Alejandro S, Höller S, Meier B, Peiter E. Manganese in plants: from acquisition to subcellular allocation. Frontiers in Plant Science. 2020; 11: 300. https://doi.org/10.3389/fpls.2020.00300.

68. Macar OK. Manganese genotoxicity in Allium cepa L. In: Proceedings of the 5th International Aegean Conference on Natural & Medical Sciences; 2022 Feb 25-26; Giresun, Turkey. Giresun: Giresun University; 2022. 213-214.

69. Prá D, Franke SIR, Giulian R, et al. Genotoxicity and mutagenicity of iron and copper in mice. Biometals. 2008; 21: 289-297. https://doi.org/10.1007/s10534-007-9118-3.

70. Chandra S, Chauhan LK, Murthy RC, Saxena PN, Pande PN, Gupta SK. Comparative biomonitoring of leachates from hazardous solid waste of two industries using Allium test. The Science of the Total Environment. 2005; 347(1-3): 46-52. https://doi.org/10.1016/j.scitotenv.2005.01.002.

71. Jadoon S, Malik A. DNA damage by heavy metals in animals and human beings: an overview. Biochemical Pharmacology. 2017; 6(3): 1-8. http://dx.doi.org/10.4172/2167-0501.1000235.

72. Exley C. Darwin, natural selection and the biological essentiality of aluminium and silicon. Trends in Biochemical Sciences. 2009; 34(12): 589-593. https://doi.org/10.1016/j.tibs.2009.07.006.

73. Kisnierienė V, Lapeikaitė I. When chemistry meets biology: the case of aluminium–a review. Chemija. 2015; 26(3): 148-158.

74. Campos JMSD, Viccini LF. Cytotoxicity of aluminum on meristematic cells of Zea mays and Allium cepa. Caryologia. 2003; 56(1): 65-73. https://doi.org/10.1080/00087114.2003.10589309.

75. Matsumoto H, Motoda H. Aluminum toxicity recovery processes in root apices. Possible association with oxidative stress. Plant Science. 2012; 185: 1-8. https://doi.org/10.1016/j.plantsci.2011.07.019.

76. Yanık F, Vardar F. Toxic effects of aluminum oxide (Al2O3) nanoparticles on root growth and development in Triticum aestivum. Water, Air, & Soil Pollution. 2015; 226: 1-13. https://doi.org/10.1007/S11270-015-2566-4.

77. Zendehboodi Z. Cytotoxicity and genotoxicity effects of water boiled in aluminum vessels on Allium cepa root tip cells. Journal of Environmental Health Science & Engineering. 2018; 16: 337-341. https://doi.org/10.1007/s40201-018-0313-7.

78. Li S, Sun X, Ma X. Effects of cyclic tensile strain on oxidative stress and the function of Schwann cells. BioMed Research International. 2018; 5746525. https://doi.org/10.1155/2018/5746525.

79. Cavallini G, Sgarbossa A, Parentini I, Bizzarri R, Donati A, Lenci F, Bergamini E. Dolichol: A component of the cellular antioxidant machinery. Lipids. 2016; 51: 477-486. https://doi.org/10.1007/s11745-016-4137-x.

80. Tuteja N. Mechanisms of high salinity tolerance in plants. Methods Enzymol. 2007; 428: 419-438. https://doi.org/10.1016/S0076-6879(07)28024-3.

81. Caverzan A, Casassola A, Brammer SP. Antioxidant responses of wheat plants under stress. Genetics and Molecular Biology. 2016; 39: 1-6. https://doi.org/10.1590/1678-4685-GMB-2015-0109.

82. Asadi Karam E, Keramat B, Sorbo S, Maresca V, Asrar Z, Mozafari H, Basile A. Interaction of triacontanol and arsenic on the ascorbate-glutathione cycle and their effects on the ultrastructure in Coriandrum sativum L. Environmental and Experimental Botany. 2017; 141: 161–169. https://doi.org/10.1016/j.envexpbot.2017.07.012.

83. Aljahdali MO, Alhassan AB. Ecological risk assessment of heavy metal contamination in mangrove habitats, using biochemical markers and pollution indices: A case study of Avicennia marina L. in the Rabigh lagoon, Red Sea. Saudi Journal of Biological Sciences. 2020; 27(4): 1174-1184. https://doi.org/10.1016/j.sjbs.2020.02.004.

84. Šiukšta R, Bondzinskaitė S, Kleizaitė V, Žvingila D, Taraškevičius R, Mockeliūnas L, Čėsnienė T. Response of Tradescantia plants to oxidative stress induced by heavy metal pollution of soils from industrial areas. Environmental Science and Pollution Research. 2019; 26: 44-61. https://doi.org/10.1007/s11356-018-3224-3.

85. Chandrasekhar C, Ray JG. Copper accumulation, localization and antioxidant response in Eclipta alba L. in relation to quantitative variation of the metal in soil. Acta Physiologiae Plantarum. 2017; 39: 1-14. https://doi.org/10.1007/s11738-017-2508-4.

86. Saleem MH, Fahad S, Khan SU, Din M, Ullah A, Sabagh AE, Liu L. Copper-induced oxidative stress, initiation of antioxidants and phytoremediation potential of flax (Linum usitatissimum L.) seedlings grown under the mixing of two different soils of China. Environmental Science and Pollution Research. 2020; 27: 5211-5221. https://doi.org/10.1007/s11356-019-07264-7.

87. Santo DE, Dusman E, da Silva Gonzalez R, Romero AL, dos Santos Gonçalves do Nascimento GC, de Souza Moura MA, Peron AP. Prospecting toxicity of octocrylene in Allium cepa L. and Eisenia fetida Sav. Environmental Science and Pollution Research. 2023; 30(3): 8257-8268. https://doi.org/10.1007/s11356-022-22795-2.

88. Fatima RA, Ahmad M. Certain antioxidant enzymes of Allium cepa as biomarkers for the detection of toxic heavy metals in wastewater. Science of the Total Environment. 2005; 346(1-3): 256-273.

89. Hall JÁ. Cellular mechanisms for heavy metal detoxification and tolerance. Journal of Experimental Botany. 2002; 53(366): 1–11. https://doi.org/10.1093/jexbot/53.366.1.

90. Panda SK, Singha LB, Khan MH. Does aluminium phytotoxicity induce oxidative stress in greengram (Vigna radiata). Bulgarian Journal of Plant Physiology. 2003; 29(1-2): 77-86.

91. Hong J, Rico CM, Zhao L, Adeleye AS, Keller AA, Peralta-Videa JR, Gardea-Torresdey JL. Toxic effects of copper-based nanoparticles or compounds to lettuce (Lactuca sativa) and alfalfa (Medicago sativa). Environmental Science: Processes & Impacts. 2015; 17(1): 177–185. https://doi.org/10.1039/C4EM00551A.

92. Gjata I, Tommasi F, De Leonardis S, Dipierro N, Paciolla C. Cytological alterations and oxidative stress induced by cerium and neodymium in lentil seedlings and onion bulbs. Frontiers of Environmental Science. 2022; 10: 969162. https://doi.org/10.3389/fenvs.2022.969162.

93. Hasanuzzaman M, Matin MA, Fardus J, Hasanuzzaman M, Hossain MS, Parvin K. Foliar application of salicylic acid improves growth and yield attributes by upregulating the antioxidant defense system in Brassica campestris plants grown in lead-amended soils. Acta Agrobot. 2019; 72(2). https://doi.org/10.5586/aa.1765.

94. Edwards R, Dixon DP, Walbot V. Plant glutathione S-transferases: enzymes with multiple functions in sickness and in health. Trends in Plant Science. 2000; 5(5): 193-198.

95. Gill SS, Tuteja N. Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants. Plant Physiol Biochem. 2010; 48(12): 909-930. https://doi.org/10.1016/j.plaphy.2010.08.016.

96. Hasanuzzaman M, Fujita M. Exogenous sodium nitroprusside alleviates arsenic-induced oxidative stress in wheat (Triticum aestivum L.) seedlings by enhancing antioxidant defense and glyoxalase system. Ecotoxicology. 2013; 22: 584-596. https://doi.org/10.1007/s10646-013-1050-4.

97. Helaoui S, Hattab S, Mkhinini M, Boughattas I, Majdoub A, Banni M. The effect of nickel exposure on oxidative stress of Vicia faba plants. Bull Environ Contam Toxicol. 2022; 108(6): 1074-1080. https://doi.org/10.1007/s00128-022-03535-1.

98. Yin H, Xu L, Porter NA. Free radical lipid peroxidation: mechanisms and analysis. Chem Rev. 2011; 111(10): 5944-5972. https://doi.org/10.1021/cr200084z.

99. Büyükgüzel E, Kalender Y. Exposure to streptomycin alters oxidative and antioxidative response in larval midgut tissues of Galleria mellonella. Pestic Biochem Physiol. 2009; 94(2-3): 112-118. https://doi.org/10.1016/j.pestbp.2009.04.008.

100. Tsao YC, Gu PW, Liu SH, Tzeng IS, Chen JY, Luo JCJ. Nickel exposure and plasma levels of biomarkers for assessing oxidative stress in nickel electroplating workers. Biomarkers. 2017; 22(5): 455-460. https://doi.org/10.1080/1354750X.2016.1252964.

101. Yamamoto Y. Damage to photosystem II by lipid peroxidation products. Biochim Biophys Acta. 2017; 1861(2): 457-466. https://doi.org/10.1103/PhysRevB.96.035125.

Downloads

Published

2025-10-31

Issue

Section

Artigos

How to Cite

EFEITOS TOXICOGENÉTICOS E BIOQUÍMICOS DA ÁGUA E DO SEDIMENTO DE UMA LAGOA COSTEIRA (ES/BRASIL) AVALIADOS COM ALLIUM CEPA. Acta Biologica Brasiliensia, [S. l.], v. 8, n. 2, p. 97–123, 2025. DOI: 10.18554/acbiobras.v8i2.8641. Disponível em: https://seer.uftm.edu.br/revistaeletronica/index.php/acbioabras/article/view/8641. Acesso em: 5 dec. 2025.