GENETIC ENGINEERING, CRISPR AND CARDIOVASCULARDISEASES: THE EDITION OF GENOMES BREAKINGFRONTIERS
DOI:
https://doi.org/10.18554/acbiobras.v2i2.8674Keywords:
chronic diseases, gene edition, molecular biology, genomic medicineAbstract
Cardiovascular Diseases (CVDs) represent a set of pathologies that affect the heart and blood vessels, which are considered as one of the main causes of mortality and morbidity worldwide, contributing to the significant increase in health system spending. CVDs are defined as the inability of the heart to pump blood, oxygen,
and nutrients to organs and tissues. They are pathologies of multifactorial etiology and their development is mainly related to genetic factors. It is currently known that
certain gene variations may imply in susceptibility and disease progression. But
there are no methods to prevent and slow the progression of CVD based on genetic factors. Thus, this study aims to correlate the CRISPR/Cas9 technique to CVDs. CRISPR/Cas9 is a system that is useful in genome modulation and editing of genetic factors. It can be applied to correct genetic variants that predict the disease through the insertion or deletion of nitrogenous bases of the genome, and it can be
used in the differentiation of stem cells into cardiomyocytes for the correction of CVDs. CRISPR/Cas9 is the latest and most remarkable DNA-editing tool, enabling
gene therapy to control numerous pathologies, including CVDs.
References
(1) Pirani N, Khiavi F. 2017. Population Attributable Fraction for Cardiovascular
Diseases Risk Factors in Selected Countries: A comparative study. Mater Socio
Medica. 29 (1): 35.
(2) Rocha RM, Martins W de A. 2017. Manual de prevenção cardiovascular. 1 ed.
Ricardo Mourilhe Rocha W de AM, editor. Rio de Janeiro: SOCERJ - Sociedade
de Cardiologia do Estado do Rio de Janeiro; 5 – 93 p.
(3) Arend MC, Pereira JO, Markoski MM. 2016. The CRISPR/Cas9 System and
the Possibility of Genomic Edition for Cardiology. Arq Bras Cardiol. 108 (1): 81–
3.
(4) Organization WH. Global Atlas on cardiovascular disease prevention and
control. Shanthi Mendis PP and BN. 2011. editor. Vol. 1, World Health Organization. Geneva. 3–155 p.
(5) Nordestgaard BG. 2016. Triglyceride-Rich Lipoproteins and Atherosclerotic
Cardiovascular Disease. Circ Res. 118 (4): 547–63.
(6) Huang L, Hua Z, Xiao H, Cheng Y, Xu K, Gao Q, et al. 2017. CRISPR/Cas9-
mediated ApoE-/-and LDLR-/-double gene knockout in pigs elevates serum LDL-C and TC levels. Oncotarget. 8 (23): 37751–60.
(7) Kathiresan S, Srivastava D. 2012. Genetics of Human Cardiovascular Disease.
Cell. 148 (6): 1242–57.
(8) Manson JE, Bassuk SS. 2015. Biomarkers of cardiovascular disease risk in
women. Metabolism. 64 (3): S33–9.
(9) Dittrich J, Beutner F, Teren A, Thiery J, Burkhardt R, Scholz M, et al. 2019.
Plasma levels of apolipoproteins C-III, A-IV, and E are independently associated
with stable atherosclerotic cardiovascular disease. Atherosclerosis. 281: 17–24.
(10) Schumacher T, Benndorf RA. 2017. ABC Transport Proteins in Cardiovascular Disease—A Brief Summary. Molecules. 22 (4): 589.
(11) Yu X, Qian K, Jiang N, Zheng X, Cayabyab FS, Tang C. 2014. ABCG5/ABCG8 in cholesterol excretion and atherosclerosis. Clin Chim Acta. 428:82–8.
(12) Iacocca MA, Wang J, Sarkar S, Dron JS, Lagace T, McIntyre AD, et al. 2018.
Whole-Gene Duplication of PCSK9 as a Novel Genetic Mechanism for Severe
Familial Hypercholesterolemia. Can J Cardiol. 34 (10): 1316–24.
(13) Marian AJ, Braunwald E. 2017. Hypertrophic Cardiomyopathy. Circ Res. 121
(7): 749–70.
(14) Sabater-Molina M, Pérez-Sánchez I, Hernández del Rincón JP, Gimeno JR.
2018. Genetics of hypertrophic cardiomyopathy: A review of current state. Clin
Gene. 93 (1): 3–14.
(15) Marsiglia JDC, Credidio FL, de Oliveira TGM, Reis RF, Antunes M de O, de
Araujo AQ, et al. 2013. Screening of MYH7, MYBPC3, and TNNT2 genes in
Brazilian patients with hypertrophic cardiomyopathy. Am Heart J. 166 (4): 775–82.
(16) Sedaghat-Hamedani F, Kayvanpour E, Tugrul OF, Lai A, Amr A, Haas J, et
al. 2018. Clinical outcomes associated with sarcomere mutations in hypertrophic cardiomyopathy: a meta-analysis on 7675 individuals. Clin Res Cardiol. 107 (1):
30–41.
(17) Wang Y, Du X, Zhou Z, Jiang J, Zhang Z, Ye L, et al. 2016. A gain-of-function
ACTC1 3′UTR mutation that introduces a miR-139-5p target site may be associated with a dominant familial atrial septal defect. Sci Rep. 6 (1): 25404.
(18) Despond EA, Dawson JF. 2018. Classifying Cardiac Actin Mutations
Associated With Hypertrophic Cardiomyopathy. Front Physiol. 9 (April): 1–6.
(19) Nijak A, Alaerts M, Kuiperi C, Corveleyn A, Suys B, Paelinck B, et al. 2018.
Left ventricular non-compaction with Ebstein anomaly attributed to a TPM1
mutation. Eur J Med Genet. 61 (1): 8–10.
(20) Lu X-L, Yao X-L, Yan C-Y, Wan Q-L, Li Y-M. 2016. Functional role of NKX2-5 and Smad6 expression in developing rheumatic heart disease. Eur Rev Med Pharmacol Sci. 20 (4): 715–20.
(21) Van Berlo JH, Aronow BJ, Molkentin JD. 2013. Parsing the Roles of the
Transcription Factors GATA-4 and GATA-6 in the Adult Cardiac Hypertrophic
Response. Sadayappan S, editor. PLoS One. 8 (12): e84591.
(22) Dixit R, Narasimhan C, Balekundri VI, Agrawal D, Kumar A, Mohapatra B.
2018. Functionally significant, novel GATA4 variants are frequently associated
with Tetralogy of Fallot. Hum Mutat. 39 (12): 1957–72.
(23) Steimle JD, Moskowitz IP. 2017. TBX5. In: Current Topics in Developmental
Biology. p. 195–221.
(24) Mosca L, Banka CL, Benjamin EJ, Berra K, Bushnell C, Dolor RJ, et al. 2007.
Evidence-Based Guidelines for Cardiovascular Disease Prevention in Women:
2007 Update. Circulation. 115 (11): 1481–501.
(25) Organização Mundial de Saúde. OPAS/OMS Brasil - Doenças cardiovasculares. [cited 2018 May 22]. Available from: https://www.paho.org/bra/index.php?option=com_content&view=article&id=5253:doencas-cardiovasculares&Itemid=839
(26) Brant LCC, Nascimento BR, Passos VMA, Duncan BB, Bensenõr IJM, Malta
DC, et al. 2017. Variações e diferenciais da mortalidade por doença cardiovascular no Brasil e em seus estados, em 1990 e 2015: estimativas do Estudo Carga Global de Doença. Rev Bras Epidemiol. 20 (suppl 1): 116–28.
(27) Sander JD, Joung JK. 2014. CRISPR-Cas systems for editing, regulating and
targeting genomes. Nat Biotechnol. 32 (4): 347–55.
(28) Doudna JA, Charpentier E. 2014. The new frontier of genome engineering with CRISPR-Cas9. Science (80- ). 346 (6213): 1258096–1258096.
(29) Salsman J, Dellaire G. 2017. Precision genome editing in the CRISPR era.
Biochem Cell Biol. 95 (2): 187–201.
(30) García-Tuñón I, Hernández-Sánchez M, Ordoñez JL, Alonso-Pérez V, ÁlamoQuijada M, Benito R, et al. 2017. The CRISPR/Cas9 system efficiently reverts the tumorigenic ability of BCR/ABL in vitro and in a xenograft model of chronic myeloid leukemia. Oncotarget. 8 (16): 26027–40.
(31) Kang H, Minder P, Park MA, Mesquitta W-T, Torbett BE, Slukvin II. 2015.
CCR5 Disruption in Induced Pluripotent Stem Cells Using CRISPR/Cas9 Provides
Selective Resistance of Immune Cells to CCR5-tropic HIV-1 Virus. Mol Ther - Nucleic Acids. 4 (12): e268.
(32) Yin Z, Cai M, Weng X, Liu Z, Zhang G. 2019. Porcine insulin receptor substrate 2 : molecular cloning , tissues distribution , and functions in hepatocyte and aortic endothelial cells. Pol J Vet Sci. 22 (3): 589–98.
(33) Chung JY, Ain QU, Song Y, Yong S-B, Kim Y-H. 2019. Targeted delivery of
CRISPR interference system against Fabp4 to white adipocytes ameliorates obesity, inflammation, hepatic steatosis, and insulin resistance. Genome Res. 29 (9): 1442–52.
(34) Nguyen AH, Marsh P, Schmiess-heine L, Burke PJ, Lee A, Lee J. 2019. Cardiac tissue engineering : state-of-the-art methods and outlook 0: 57.
(35) Martinez-Lage M, Torres-Ruiz R, Rodriguez-Perales S. 2017. CRISPR/Cas9
Technology: Applications and Human Disease Modeling. In: Progress in Molecular
Biology and Translational Science. p. 23–48.
(36) Pan L, Sheng M, Huang Z, Zhu Z, Xu C, Teng L, et al. 2017. Zinc-finger
protein 418 overexpression protects against cardiac hypertrophy and fibrosis. Bader
M, editor. PLoS One. 12 (10): e0186635.
(37) Li Y, Yang D, Bai Y, Mo X, Huang W, Yuan W, et al. 2008. ZNF418, a novel
human KRAB/C2H2 zinc finger protein, suppresses MAPK signaling pathway.
Mol Cell Biochem. 310 (1–2): 141–51.
(38) Marczenke M, Piccini I, Mengarelli I, Fell J, Röpke A, Seebohm G, et al. 2017.
Cardiac subtype-specific modeling of Kv1.5 ion channel deficiency using human
pluripotent stem cells. Front Physiol. 8 (Jul): 1–11.
(39) Dehghani-Samani A, Madreseh-Ghahfarokhi S, Dehghani-Samani. 2019. A.
Mutations of voltage-gated ionic channels and risk of severe cardiac arrhythmias.
Acta Cardiol Sin. 35 (2): 99–110.
(40) Wang P, Liu Z, Zhang X, Li J, Sun L, Ju Z, et al. 2018. CRISPR/Cas9-mediated
gene knockout reveals a guardian role of NF-κB/RelA in maintaining the
homeostasis of human vascular cells. Protein Cell. 9 (11): 945–65.
(41) Karlgren M, Simoff I, Keiser M, Oswald S, Artursson P. 2018. CRISPR-Cas9:
A New Addition to the Drug Metabolism and Disposition Tool Box. Drug Metab
Dispos. 46 (11): 1776–86.
(42) Gonçalves GAR, Paiva R de MA. 2017. Gene therapy: advances, challenges
and perspectives. Einstein (São Paulo). 15 (3): 369–75.
(43) Mojica FJM, Díez-Villaseñor C, García-Martínez J, Soria E. 2005. Intervening
sequences of regularly spaced prokaryotic repeats derive from foreign genetic
elements. J Mol Evol. 60 (2): 174–82.
(44) Marraffini LA, Sontheimer EJ. 2010. CRISPR interference: RNA-directed
adaptive immunity in bacteria and archaea. Nat Rev Genet. 11 (3): 181–90.
(45) Jinek M, Chylinski K, Fonfara I, Hauer M, Doudna JA, Charpentier E. 2012.
A Programmable Dual-RNA-Guided DNA Endonuclease in Adaptive Bacterial
Immunity. Science. 337 (6096): 816–21.
(46) Lino CA, Harper JC, Carney JP, Timlin JA. 2018. Delivering CRISPR: a
review of the challenges and approaches. Drug Deliv. 25 (1): 1234–57.
(47) Brouns SJJ, Jore MM, Lundgren M, Westra ER, Slijkhuis RJH, Snijders APL, et al. 2008. Small CRISPR RNAs Guide Antiviral Defense in Prokaryotes. Science. 321 (5891): 960–4.
(48) Wright A V., Nuñez JK, Doudna JA. 2016. Biology and Applications of CRISPR Systems: Harnessing Nature’s Toolbox for Genome Engineering. Cell. 164 (1–2): 29–44.
(49) Makarova KS, Wolf YI, Alkhnbashi OS, Costa F, Shah SA, Saunders SJ, et al. 2015. An updated evolutionary classification of CRISPR–Cas systems. Nat Rev Microbiol. 13 (11): 722–36.
(50) Makarova KS, Haft DH, Barrangou R, Brouns SJJ, Charpentier E, Horvath P, et al. 2011. Evolution and classification of the CRISPR–Cas systems. Nat Rev Microbiol. 9 (6): 467–77.
(51) Cribbs AP, Perera SMW. 2017. Science and bioethics of CRISPR-CAS9 gene editing: An analysis towards separating facts and fiction. Yale J Biol Med. 90 (4): 625–34.
(52) Motta BM, Pramstaller PP, Hicks AA, Rossini A. 2017. The Impact of CRISPR/Cas9 Technology on Cardiac Research: From Disease Modelling to Therapeutic Approaches. Stem Cells Int. 2017: 1–13.
(53) Musunuru K. 2017. Genome Editing. J Am Coll Cardiol. 70 (22): 2808–21.
(54) Carlos G, Caetano G, Matos HDEOS, Simão CR, Duarte RV, Barreto SA, et al. 2019. Técnica crispr-cas9 e sua utilização na área laboratorial. Brazilian J Surg Clin Res. 25 (1): 96–9.
(55) Yoshimi K, Kunihiro Y, Kaneko T, Nagahora H, Voigt B, Mashimo T. 2016. ssODN-mediated knock-in with CRISPR-Cas for large genomic regions in zygotes. Nat Commun. 7 (1): 10431.
(56) Perez EE, Wang J, Miller JC, Jouvenot Y, Kim KA, Liu O, et al. 2008. Establishment of HIV-1 resistance in CD4+ T cells by genome editing using zincfinger nucleases. Nat Biotechnol. 26 (7): 808–16.
(57) Hsu PD, Lander ES, Zhang F. 2014. Development and Applications of CRISPR-Cas9 for Genome Engineering. Cell. 157 (6): 1262–78.
(58) Ma H, Marti-Gutierrez N, Park S-W, Wu J, Lee Y, Suzuki K, et al. 2017. Correction of a pathogenic gene mutation in human embryos. Nature. 548 (7668): 413–9.
(59) Birling M-C, Herault Y, Pavlovic G. 2017. Modeling human disease in rodents by CRISPR/Cas9 genome editing. Mamm Genome. 28 (7–8): 291–301.
(60) Boel A, De Saffel H, Steyaert W, Callewaert B, De Paepe A, Coucke PJ, et al. 2018. CRISPR/Cas9-mediated homology-directed repair by ssODNs in zebrafish induces complex mutational patterns resulting from genomic integration of repairtemplate fragments. Dis Model Mech. 11 (10): dmm035352.
(61) Ran FA, Hsu PD, Wright J, Agarwala V, Scott DA, Zhang F. 2013. Genome engineering using the CRISPR-Cas9 system. Nat Protoc. 8 (11): 2281–308.
(62) Finer M, Glorioso J. 2017. A brief account of viral vectors and their promise for gene therapy. Gene Ther. 24 (1): 1–2.
(63) Cho SW, Kim S, Kim Y, Kweon J, Kim HS, Bae S, et al. 2014. Analysis of off-target effects of CRISPR/Cas-derived RNA-guided endonucleases and nickases. Genome Res. 24 (1): 132–41.