EFEITO DA SUPLEMENTAÇÃO DE GLICOSE EM CÉLULAS EPITELIAIS BRÔNQUICAS HUMANAS INFECTADAS COM Cryptococcus neoformans

Autores

  • Roberta Pereira Soares Emrich Universidade Federal do Triângulo Mineiro
  • Giovanna Ferreira Bueno Universidade Federal do Triângulo Mineiro
  • Wanessa Maria dos Santos Universidade Federal do Triângulo Mineiro
  • Aline Beatriz Mahler Pereira Universidade Federal do Triângulo Mineiro
  • Leonardo Euripedes de Andrade e Silva Universidade Federal do Triângulo Mineiro
  • oão Batista Camargo Neto Faculdade de Medicina de Ribeirão Preto
  • Paulo Roberto da Silva Universidade Federal do Triângulo Mineiro
  • Mario Leon Silva-Vergara Universidade Federal do Triângulo Mineiro
  • Alexandre Paula Rogerio Universidade Federal do Triângulo Mineiro

DOI:

https://doi.org/10.18554/acbiobras.v8i2.8766

Palavras-chave:

células epiteliais brônquicas, Cryptococcus neoformans, citocinas , glicose

Resumo

A hiperglicemia pode causar deficiências nas respostas imune inata e adaptativa, além de aumentar a suscetibilidade a infecções fúngicas invasivas, como a criptococose. Avaliamos os efeitos da interação entre Cryptococcus neoformans (MOI 100) nas células BEAS-2B suplementadas com glicose (22,5 and 35 mM) após 24 horas de estímulo. Não foram detectados efeitos citotóxicos nas células estimuladas com C. neoformans e/ou suplementadas com glicose. Em comparação ao controle, C. neoformans aumentou a produção de IL-6 e IL-8, bem como a ativação de NF-κB, ERK1/2 e STAT3 nas células BEAS-2B. A suplementação de glicose promoveu efeitos pró-inflamatórios ao aumentar a produção de IL-6 e a ativação de fosfo-STAT3 nas células epiteliais brônquicas infectadas com C. neoformans, quando comparadas às apenas infectadas. Além disso, a suplementação de glicose promoveu efeitos anti-inflamatórios ao reduzir a produção de IL-8 e a fosforilação de ERK1/2. Ademais, a suplementação de glicose aumentou a internalização de C. neoformans pelas células, reduziu a porcentagem de fungos aderidos à superfície celular e diminuiu seu crescimento. Esses resultados demonstram que o aumento de glicose modula a ativação da resposta imune inata das células epiteliais brônquicas modulando a infecção criptocócica.

Referências

1. Zhao Y, Ye L, Zhao F, Zhang L, Lu Z, Chu T, Wang S, Liu Z, Sun Y, Chen M, Liao G, Ding C, Xu Y, Liao W, Wang L. Cryptococcus neoformans, a global threat to human health. Infectious Diseases of Poverty. 2023; 12(1): 20. https://doi.org/10.1186/s40249-023-01073-4.

2. Kushima H, Ishii H. Cryptococcosis. Medical Mycology Journal, 2025; 66(1): 27-31. https://doi.org/10.3314/mmj.25.001.

3. Moreira TA, Ferreira MS, Ribas RM, Borges AS. Criptococose: estudo clínico-epidemiológico, laboratorial e das variedades do fungo em 96 pacientes. Revista da Sociedade Brasileira de Medicina Tropical. 2006; 39(3). https://doi.org/10.1590/s0037-86822006000300005.

4. Vilchez RA, Fung J, Kusne S. Cryptococcosis in organ transplant recipients: an overview. American Journal of Transplantation. 2002; 2(7): 575-80. https://doi.org/10.1034/j.1600-6143.2002.20701.x.

5. Berbudi A, Rahmadika N, Tjahjadi AI, Ruslami R. Type 2 diabetes and its impact on the immune system. Current Diabetes Reviews. 2020; 16(5): 442-449. https://doi.org/10.2174/1573399815666191024085838.

6. Peleg AY, Weerarathna T, McCarthy JS, Davis TME. Common infections in diabetes: pathogenesis, management and relationship to glycemic control. Diabetes/Metabolism Research and Reviews. 2007; 23(1): 3-13. https://doi.org/10.1002/dmrr.682.

7. Tsai ST, Lin FY, Chen PS, Chiang HY, Kuo CC. Three-year mortality in cryptococcal meningitis: Hyperglycemia predicts unfavorable outcome. PLoS One. 2021; 16(5): e0251749. https://doi.org/10.1371/journal.pone.0251749.

8. Khateeb J, Fuchs E, Khamaisi M. Diabetes and lung disease: an underestimated relationship. Review of Diabetic Studies. 2019; 15:1–15. https://doi.org/10.1900/RDS.2019.15.1.

9. Ramasamy R, Yan SF, Schmidt AM. Receptor for AGE (RAGE): signaling mechanisms in the pathogenesis of diabetes and its complications. Annals of the New York Academy of Sciences. 2021 1243: 88–102. https://doi.org/10.1111/j.1749-6632.2011.06320.x.

10. Ahmed M, de Winther MPJ, Van den Bossche J. Epigenetic mechanisms of macrophage activation in type 2 diabetes. Immunobiology. 2017; 222(10): 937–943. https://doi.org/10.1016/j.imbio.2016.08.011.

11. van Crevel R, van de Vijver S, Moore DAJ. The global diabetes epidemic: what does it mean for infectious diseases in tropical countries? Lancet Diabetes Endocrinol. 2017; 5(6): 457–468. https://doi.org/10.1016/S2213-8587(16)30081-X.

12. Thaiss CA, Levy M, Grosheva I, Zheng D, Soffer E, Blacher E, Braverman S, Tengeler AC, Barak O, Elazar M, Ben-Zeev R, Lehavi-Regev D, Katz MN, Pevsner-Fischer M, Gertler A, Halpern Z, Harmelin A, Aamar S, Serradas P, Grosfeld A, Shapiro H, Geiger B, Elinav E. Hyperglycemia drives intestinal barrier dysfunction and risk for enteric infection. Science. 2018; 359(6382): 1376–1383. https://doi.org/10.1126/science.aar3318.

13. Shilling AM, Raphael J. Diabetes, hyperglycemia, and infections. Best Practice & Research. Clinical Anaesthesiology. 2008; 22(3): 519–535. https://doi.org/10.1016/j.bpa.2008.06.005.

14. Ehrlich SF, Quesenberry CP, Van Den Eeden SK, Shan J, Ferrara A. Patients diagnosed with diabetes are at increased risk for asthma, chronic obstructive pulmonary disease, pulmonary fibrosis, and pneumonia but not lung cancer. Diabetes Care. 2010; 33(1): 55–60. https://doi.org/10.2337/dc09-0880.

15. Enomoto T, Usuki J, Azuma A, Nakagawa T, Kudoh S. Diabetes mellitus may increase risk for idiopathic pulmonary fibrosis. Chest. 2003; 123(6): 2007–2011. https://doi.org/10.1378/chest.123.6.2007.

16. Owuor OH, Chege P. Cryptococcal meningitis in an HIV-negative newly diagnosed diabetic patient: A case report. BMC Infectious Diseases. 2019; 19(1): 5. https://doi.org/10.1186/s12879-018-3625-4.

17. Lao M, Li C, Li J, Chen D, Ding M, Gong Y. Opportunistic invasive fungal disease in patients with type 2 diabetes mellitus from Southern China: Clinical features and associated factors. Journal of Diabetes Investigation. 2020; 11(3): 731–744. https://doi.org/10.1111/jdi.13183.

18. Souza HI, Pereira ABM, Oliveira JR, Silva PR, Teixeira DNS, Silva-Vergara ML, Rogério AP. Cryptococcus neoformans in association with Dermatophagoides pteronyssinus has pro- (IL-6/STAT3 overproduction) and anti-inflammatory (CCL2/ERK1/2 downregulation) effects on human bronchial epithelial cells. Inflammation. 2020; 45(3): 1269–1280. https://doi.org/10.1007/s10753-021-01619-4.

19. Bearham J, Garnett JP, Schroeder V, Biggart MGS, Baines DL. Effective glucose metabolism maintains low intracellular glucose in airway epithelial cells after exposure to hyperglycemia. American Journal of Physiology - Cell Physiology. 2019; 317(5): C983–C992. https://doi.org/10.1152/ajpcell.00193.2019.

20. Cunha MM, Pereira ABM, Lino RC, da Silva PR, Andrade-Silva LE, de Vito FB, de Souza HM, Silva-Vergara ML, Rogério AP. Effects of combination of Cryptococcus gattii and IFN-γ, IL-4 or IL-27 on human bronchial epithelial cells. Immunobiology. 228(1): 152312. https://doi.org/10.1016/j.imbio.2022.152312.

21. Mosmann T. Rapid colorimetric assay for cellular growth and survival: Application to proliferation and cytotoxicity assays. Journal of Immunological Methods. 1983; 65(1-2): 55–63. https://doi.org/10.1016/0022-1759(83)90303-4.

22. McMullan BJ, Desmarini D, Djordjevic JT, Chen SC-A, Roper M, Sorrell TC. Rapid microscopy and use of vital dyes: potential to determine viability of Cryptococcus neoformans in the clinical laboratory. PLoS One. 2015; 10(1): e0117186. https://doi.org/10.1371/journal.pone.0117186.

23. de Oliveira JR, Pereira ABM, de Souza HI, Dos Santos WM, de Assunção TSF, de Vito FB, de Souza HM, da Silva PR, da Silva MV, Junior VR, Rogério AP. Anti-inflammatory actions of aspirin-triggered resolvin D1 (AT-RvD1) in bronchial epithelial cells stimulated by cigarette smoke extract. Prostaglandins & Other Lipid Mediators. 2024; 172: 106833. https://doi.org/10.1016/j.prostaglandins.2024.106833.

24. Chaka W, Scharringa J, Verheul AF, Verhoef J, Van Strijp AG, Hoepelman IM. Quantitative analysis of phagocytosis and killing of Cryptococcus neoformans by human peripheral blood mononuclear cells by flow cytometry. Clinical and Diagnostic Laboratory Immunology. 1995; 2(6): 753–759. https://doi.org/10.1128/cdli.2.6.753-759.1995

25. Hirano T. IL-6 in inflammation, autoimmunity and cancer. International Immunology. 2021; 33(3): 127–148. https://doi.org/10.1093/intimm/dxaa078.

26. Wueest S, Konrad D. The controversial role of IL-6 in adipose tissue on obesity-induced dysregulation of glucose metabolism. American Journal of Physiology. Endocrinology and Metabolism. 2020; 319(3): E607–E613. https://doi.org/10.1152/ajpendo.00306.2020.

27. Li X, Liu G, Ma J, Zhou L, Zhang Q, Gao L. Lack of IL-6 increases blood–brain barrier permeability in fungal meningitis. Journal of Biosciences. 2015; 40(1): 7–12. https://doi.org/10.1007/s12038-014-9496-y.

28. Delfino D, Cianci L, Lupis E, Celeste A, Petrelli ML, Curró F, Cusumano V, Teti G. Interleukin-6 production by human monocytes stimulated with Cryptococcus neoformans components. Infection and Immunity. 1997; 65(6): 2454–2456. https://doi.org/10.1128/iai.65.6.2454-2456.1997.

29. Peng L, Zhong J, Xiao Y, Wang B, Li S, Deng Y, He D, Yuan J. Therapeutic effects of an anti-IL-6 antibody in fungal keratitis: Macrophage inhibition and T-cell subset regulation. Int Immunopharmacology. 2020; 85: 106649. https://doi.org/10.1016/j.intimp.2020.106649.

30. Targher G, Zenari L, Bertolini L, Muggeo M, Zoppini G. Elevated levels of interleukin-6 in young adults with type 1 diabetes without clinical evidence of microvascular and macrovascular complications. Diabetes Care. 2001; 24(5): 956–957. https://doi.org/10.2337/diacare.24.5.956.

31. Mohamed-Ali V, Armstrong L, Clarke D, Bolton CH, Pinkney JH. Evidence for regulation of plasma adhesion molecules by proinflammatory cytokines and their soluble receptors in type 1 diabetes. Journal of Internal Medicine. 2001; 250(5): 415–421. https://doi.org/10.1046/j.1365-2796.2001.00900.x.

32. Esposito K, Nappo F, Marfella R, Giugliano G, Giugliano F, Ciotola M, Quagliaro L, Ceriello A, Giugliano D. Inflammatory cytokine concentrations are acutely increased by hyperglycemia in humans: Role of oxidative stress. Circulation. 2002; 106(16): 2067–2072. https://doi.org/10.1161/01.cir.0000034509.14906.ae.

33. Kuo FY, Cheng KC, Li Y, Cheng JT, Tsai CC. Promotion of adropin expression by hyperglycemia is associated with STAT3 activation in diabetic rats. Diabetes, Metabolic Syndrome and Obesity. 2020; 13: 2269–2277. https://doi.org/10.2147/DMSO.S243755.

34. Xu H, Wang X, Du B. Mechanism of montelukast on autophagy and apoptosis of airway epithelial cells through STAT3-RORγt-IL-17/IL-23 signaling pathway. Materials Express. 2024; 14(1): 91–96. https://doi.org/10.1166/mex.2024.2596.

35. Wang C-M, Hsu C-T, Niu H-S, Chang C-H, Cheng J-T, Shieh J-M. Lung damage induced by hyperglycemia in diabetic rats: The role of signal transducer and activator of transcription 3 (STAT3). J Diabetes Complications. 2016; 30(8): 1426–1433. https://doi.org/10.1016/j.jdiacomp.2016.07.005.

36. Sato K, Hikita H, Myojin Y, Fukumoto K, Murai K, Sakane S, Tamura T, Yamai T, Nozaki Y, Yoshioka T, Kodama T, Shigekawa M, Sakamori R, Tatsumi T, Takehara T. Hyperglycemia enhances pancreatic cancer progression accompanied by elevations in phosphorylated STAT3 and MYC levels. PLoS One. 2020; 15(7): e0235573. https://doi.org/10.1371/journal.pone.0235573.

37. Gibson JF, Johnston SA. Immunity to Cryptococcus neoformans and C. gattii during cryptococcosis. Fungal Genetics and Biology. 2015; 78: 76–86. https://doi.org/10.1016/j.fgb.2014.11.006.

38. Pericolini E, Gabrielli E, Bistoni G, Cenci E, Perito S, Chow SK, Riuzzi F, Donato R, Casadevall A, Vecchiarelli A. Role of CD45 signaling pathway in galactoxylomannan-induced T-cell damage. PLoS One. 2010; 5(9): e12720. https://doi.org/10.1371/journal.pone.0012720.

39. Salerno BS, Pereira ABM, de Souza HI, Silva-Vergara ML, Levy BD, Rogerio AP. Anti-inflammatory actions of aspirin-triggered resolvin D1 (AT-RvD1) in bronchial epithelial cells infected with Cryptococcus neoformans. Inflammopharmacology. 2021; 29(5): 1603–1612. https://doi.org/10.1007/s10787-021-00855-2.

40. Lee MF, Wang NM, Liu SW, Lin SJ, Chen YH. Induction of interleukin 8 by American cockroach allergens from human airway epithelial cells via extracellular signal regulatory kinase and jun N-terminal kinase but not p38 mitogen-activated protein kinase. Annals of Allergy, Asthma & Immunology. 2010;105(3): 234–240. https://doi.org/10.1016/j.anai.2010.07.008.

41. Gremese E, Tolusso B, Bruno D, Perniola S, Ferraccioli G, Alivernini S. The forgotten key players in rheumatoid arthritis: IL-8 and IL-17 – Unmet needs and therapeutic perspectives. Frontiers in Medicine (Lausanne). 2023; 22: 10:956127. https://doi.org/10.3389/fmed.2023.956127.

42. Cimini FA, Barchetta I, Porzia A, Mainiero F, Costantino C, Bertoccini L, Ceccarelli V, Morini S, Baroni MG, Lenzi A, Cavallo MG. Circulating IL-8 levels are increased in patients with type 2 diabetes and associated with worse inflammatory and cardiometabolic profile. Acta Diabetologica. 2017; 54(10): 961–967. https://doi.org/10.1007/s00592-017-1039-1.

43. Wilkinson HN, Clowes C, Banyard KL, Matteuci P, Mace KA, Hardman MJ. Elevated local senescence in diabetic wound healing is linked to pathological repair via CXCR2. The Journal of Investigative Dermatology. 2019; 139(5): 1171–1181. https://doi.org/10.1016/j.jid.2019.01.005.

44. Wang YH, Zhang YG. Poly (I:C) alleviates obesity-related pro-inflammatory status and promotes glucose homeostasis. Cytokine. 2017; 99: 225–232. https://doi.org/10.1016/j.cyto.2017.07.011.

45. Tavares LP, Garcia CC, Machado MG, Queiroz-Junior CM, Barthelemy A, Trottein F, et al. CXCR1/2 antagonism is protective during influenza and post-influenza pneumococcal infection. Frontiers in Immunology. 2017; 8: 1055. https://doi.org/10.3389/fimmu.2017.01799.

46. Hayden MS, Ghosh S. NF-κB in immunobiology. Cell Research. 2011; 21(2): 223–244. https://doi.org/10.1038/cr.2011.13.

47. Guillot L, Carroll SF, Homer R, Qureshi ST. Enhanced innate immune responsiveness to pulmonary Cryptococcus neoformans infection is associated with resistance to progressive infection. Infection and Immunity. 2008; 76(10): 4745–4756. https://doi.org/10.1128/IAI.00341-08.

48. McDermott AJ, Tumey TA, Huang M, Hull CM, Klein BS. Inhaled Cryptococcus neoformans elicits allergic airway inflammation independent of Nuclear Factor Kappa B signalling in lung epithelial cells. Immunology. 2018; 153(4): 513–522. https://doi.org/10.1111/imm.12853.

49. Pereira ABM, Oliveira JR, Souza ALJ, Andrade-Silva L, Silva MV, Silva PR, Silva-Vergara ML, Rogerio AP. Effects of cigarette smoke extract on bronchial epithelial cells stimulated with Cryptococcus neoformans. Medical Microbiology and Immunology. 2021; 210(4): 221–233. https://doi.org/10.1007/s00430-021-00715-4.

50. Poladian N, Orujyan D, Narinyan W, Oganyan AK, Navasardyan I, Velpuri P, Chorbajian A, Venketaraman V. Role of NF-κB during Mycobacterium tuberculosis infection. International Journal of Molecular Sciences. 2023; 24(2): 1772. https://doi.org/10.3390/ijms24021772.

51. Shoham S, Huang C, Chen JM, Golenbock DT, Levitz SM. Toll-like receptor 4 mediates intracellular signaling without TNF-alpha release in response to Cryptococcus neoformans polysaccharide capsule. The Jounal of Immunology. 2001; 166(7): 4620–4626. https://doi.org/10.4049/jimmunol.166.7.4620.

52. Reischke S, Rousk J, Bååth E. The effects of glucose loading rates on bacterial and fungal growth in soil. Soil Biol Biochem. 2014; 70: 88–95. https://doi.org/10.1016/j.soilbio.2013.12.011.

53. Paterson E, Osler G, Dawson LA, Gebbing T, Sim A, Ord B. Labile and recalcitrant plant fractions are utilized by distinct microbial communities in soil: Independent of the presence of roots and mycorrhizal fungi. Soil Biology & Biochemistry. 2008; 40(5): 1103–1113. https://doi.org/10.1016/j.soilbio.2007.12.003.

54. Moore JC, McCann K, de Ruiter PC. Modeling trophic pathways, nutrient cycling, and dynamic stability in soils. Pedobiologia. 2005; 49(6): 499–510. https://doi.org/10.1016/j.pedobi.2005.05.008.

Downloads

Publicado

31-10-2025

Edição

Seção

Artigos

Como Citar

EFEITO DA SUPLEMENTAÇÃO DE GLICOSE EM CÉLULAS EPITELIAIS BRÔNQUICAS HUMANAS INFECTADAS COM Cryptococcus neoformans. Acta Biologica Brasiliensia, [S. l.], v. 8, n. 2, p. 367–387, 2025. DOI: 10.18554/acbiobras.v8i2.8766. Disponível em: https://seer.uftm.edu.br/revistaeletronica/index.php/acbioabras/article/view/8766. Acesso em: 13 dez. 2025.