EVIDÊNCIA MOLECULAR DE FOSFOLIPASE A2 (PLA2) NO VENENO DE Loxosceles similis

Authors

DOI:

https://doi.org/10.18554/acbiobras.v8i2.8771

Keywords:

Loxosceles similis, Phospholipase A2, PLA2, LsPLA2-1, Aranha marrom

Abstract

As aranhas marrons do gênero Loxosceles (Araneae, Sicariidae) ocorrem em regiões temperadas e tropicais ao redor do mundo. O envenenamento causado por suas picadas pode evoluir para o loxoscelismo, uma condição que a Organização Mundial da Saúde (OMS) classifica como um problema de saúde pública negligenciado. No Brasil, onde as espécies de relevância médica estão principalmente distribuídas nas regiões Sul e Sudeste, o número de acidentes notificados vem aumentando. Embora a espécie Loxosceles similis seja tipicamente associada a habitats subterrâneos, também é encontrada em ambientes de superfície e já foi registrada, inclusive, no interior de residências no Sudeste do Brasil, sugerindo um potencial de endemicidade. Cavernas, inclusive aquelas com atividade turística, apresentam uma probabilidade particularmente elevada de abrigar essa espécie, o que pode expor visitantes ao risco de acidentes. A maioria dos acidentes ocorre quando as aranhas, escondidas em roupas ou calçados, são pressionadas contra a pele. A picada inicial é geralmente indolor, com desconforto e dor surgindo apenas após 2 a 4 horas, o que contribui para atrasos na busca por atendimento médico e início do tratamento adequado. Neste estudo, analisamos o transcriptoma da glândula de veneno de L. similis e identificamos uma potencial sequência codificadora de Fosfolipase A2 (PLA2). Até onde sabemos, este é o primeiro relato de um transcrito semelhante a PLA2 em espécies de Loxosceles. A presença dessa sequência sugere que o veneno de L. similis pode conter componentes enzimáticos adicionais além da família Loxtox, já bem caracterizada, contribuindo potencialmente para os danos locais aos tecidos, processos inflamatórios e manifestações sistêmicas do loxoscelismo. Esses achados expandem o conhecimento atual sobre a composição do veneno de Loxosceles e abrem novas perspectivas para a compreensão dos mecanismos moleculares subjacentes ao envenenamento.

References

1. World Spider Catalog (2025). World Spider Catalog. Version 26. Natural History Museum Bern, online at http://wsc.nmbe.ch , accessed on 09/17/2025. Doi: 10.24436/2.

2. Hauke TJ, Herzig V. Dangerous arachnids - Fake news or reality? Toxicon vol. 2017; 138. https://doi.org/10.1016/j.toxicon.2017.08.024.

3. Warrell DA. Venomous Bites, Stings, and Poisoning. Infectious Disease Clinics of North America. 2019; 33 (1), 17–38. https://doi.org/10.1016/j.idc.2018.10.001,

4. Gremski LH, Trevisan-Silva D, Ferrer VP, Matsubara FH, Meissner GO, Wille ACMW, Vuitika L, Dias-Lopes C, Ullah A, Moraes FR, Cháves-Olórtegui C, Barbaro KC, Murakami MT, Arni RK, Senff-Ribeiro A, Chaim OM, Veiga SS. Recent advances in the understanding of brown spider venoms: From the biology of spiders to the molecular mechanisms of toxins. Toxicon. 2014; 83, 91–120. https://doi.org/10.1016/j.toxicon.2014.02.023.

5. Ministério da Saúde, Departamento de Informática do SUS (DATASUS). (s.d). Animais Brasil - SINAN Tabnet. Ministério da Saúde, online at: http://tabnet.datasus.gov.br/cgi/tabcgi.exe?sinannet/cnv/animaisbr.def . Accessed on 09/17/2025.

6. Pereira NB, Campos, PP, Parreiras PM, Chiarini-Garcia H, Socarrás TO, Kalapothakis E, Andrade SP, Moro L. Apoptosis, mast cell degranulation and collagen breakdown in the pathogenesis of loxoscelism in subcutaneously implanted sponges. Toxicon. 2014; 84, 7-18. https://doi.org/10.1016/j.toxicon.2014.03.003.

7. Leal HG, Oliveira Mendes BBR, Horta CCR, Pereira NB, Ferreira DSM, Silva TS, Biscoto GL, Kalapothakis Y, Avila RAM, Cháves-Olórtegui C, Kalapothakis E. Molecular cloning and functional characterization of recombinant Loxtox from Loxosceles similis venom. Int J Biol Macromol. 2020; 164, 1112-1123. https://doi.org/10.1016/j.ijbiomac.2020.07.190.

8. Lopes PH, Squaiella-Baptistão CC, Marques MOT, Tambourgi DV. Clinical aspects, diagnosis and management of Loxosceles spider envenomation: literature and case review. Archives of Toxicology. 2020; 94, 1461-1477. https://doi.org/10.1007/s00204-020-02719-0.

9. Laude M, Lima S, Corsini T, Dussot A, Moniod L, Barjat T, Chauleur C. Cutaneous mammary loxoscelism: An unknown cause of breast inflammation: A case report and review of the literature. Annales de Chirurgie Plastique Esthetique. 2021; 66(6), 476-480. https://doi.org/10.1016/j.anplas.2021.09.002.

10. Gremski LH, Justa HC, Polli NLC, Schluga PHC, Theodoro JL, Wille ACM, Senff-Ribeiro A, Veiga SS. Systemic Loxoscelism, Less Frequent but More Deadly: The Involvement of Phospholipases D in the Pathophysiology of Envenomation. Toxins. 2023; 15(1), 17. https://doi.org/10.3390/toxins15010017.

11. Okamoto CK, van den Berg CW, Pohl PC, Tambourgi DV. Role of the complement system in kidney cell death induced by Loxosceles venom Sphingomyelinases D. Arch Toxicol. 2024; 98, 1561-1572. https://link.springer.com/article/10.1007/s00204-024-03711-8.

12. Tambourgi DV, Petricevich VL, Magnoli FC, Assaf SLMR, Jancar S, da Silva D. Endotoxemic-like shock induced by Loxosceles spider venoms: Pathological changes and putative cytokine mediators. Toxicon. 1998; 36 (2), 391-403. https://doi.org/10.1016/S0041-0101(97)00063-9.

13. Okamoto CK, van den Berg CW, Masashi M, Gonçalves-de-Andrade RM, Tambourgi DV. Tetracycline reduces kidney damage induced by Loxosceles spider venom. Toxins. 2017; 9(3), 90. https://doi.org/10.3390/toxins9030090.

14. Luciano MN, da Silva PH, Veiga SS. Experimental Evidence for a Direct Cytotoxicity of Loxosceles intermedia (Brown Spider) Venom in Renal Tissue. Journal of Histochemistry and Cytochemistry. 2004; 52(4). https://doi.org/10.1177/002215540405200404.

15. Andrade RMG, Galati EAB, Tambourgi DV. Presença de Loxosceles similis Moenkhaus, 1998 (Araneae: Sicariidae) na Serra da Bodoquena, Estado de Mato Grosso do Sul, Brasil. Revista da Sociedade Brasileira de Medicina Tropical. 2001; 34(3), 275–277. https://doi.org/10.1590/S0037-86822001000300008.

16. Machado ÉO, Álvares ÉSS, De Maria M, Kalapothakis E. Sobre a presença de três espécies de Loxosceles Heineken & Lowe (Araneae: Sicariidae) no município de Belo Horizonte, Minas Gerais, Brasil. Lundiana: International Journal of Biodiversity. 2006; 6(2), 113-115. https://doi.org/10.35699/2675-5327.2005.22104.

17. Medina-Santos R, Costa TGF, Assis TCS, Kalapothakis Y, Limas SA, do Carmo AO, Gonzalez-Kozlova EE, Kalapothakis E, Chávez-Olórtegui C, Guerra-Duarte CL. Analysis of NGS data from Peruvian Loxosceles laeta spider venom gland reveals toxin diversity. Comparative Biochemistry and Physiology Part D: Genomics Proteomics. 2022; 43. https://doi.org/10.1016/j.cbd.2022.101017.

18. Soltan-Alinejad P, Alipour H, Meharabani D, Azizi K. Therapeutic Potential of Bee and Scorpion Venom Phospholipase A2 (PLA2): A Narrative Review. Iranian Journal of Medical Sciences. 2022; 47(4), 300-3123. https://pubmed.ncbi.nlm.nih.gov/35919080.

19. Muntean M, Florea A. Phospholipase A2 - A Significant Bio-Active Molecule in Honeybee (Apis mellifera L.) Venom. Molecules. 2025; 30(12), 2623. https://doi.org/10.3390/molecules30122623.

20. Silva-Magalhães R, dos Santos AM, Silva-Araújo AL, Peres-Damásio PL, Alvarenga VG, de Oliveira LS, Sanchez EF, Chávez-Olórtegui C, Varela LSRN, Paiva ALB, Guerra-Duarte C. Venom from Loxosceles Spiders Collected in Southeastern and Northeastern Brazilian Regions Cause Hemotoxic Effects on Human Blood Components. Toxins. 2024; 16(12), 532. https://doi.org/10.3390/toxins16120532.

21. Jin G, Hrithik TH, Mandal E, Kil EJ, Kim Y. Phospholipase A2 activity is required for immune defense of European (Apis mellifera) and Asian (Apis cerana) honeybees against American foulbrood pathogen, Paenibacillus larvae. PLoS One. 2024; 19(2): e0290929. https://doi.org/10.1371/journal.pone.0290929.

22. Valdez-Cruz NA, Batista CVF, Possani LD. Phaiodactylipin, a glycosylated heterodimeric phospholipase A2 from the venom of the scorpion Anuroctonus phaiodactylus. Eur J Biochem. 2004; 271(8), 1453-1464. https://doi.org/10.1111/j.1432-1033.2004.04047.x.

23. Incamnoi P, Patramanon R, Thammasirirak S, Chaveerach A, Uawonggul N, Sukprasert S, Rungsa P, Daduang J, Daduang S. Heteromtoxin (HmTx), a novel heterodimeric phospholipase A2 from Heterometrus laoticus scorpion venom. Toxicon. 2013; 61, 62–71. https://doi.org/10.1016/j.toxicon.2012.10.012.

24. Louati H, Krayem N, Fendri A, Aissa I, Sellami M, Bezzine S, Gargouri Y. A thermoactive secreted phospholipase A2 purified from the venom glands of Scorpio maurus: Relation between the kinetic properties and the hemolytic activity. Toxicon. 2013; 72, 133–142. https://doi.org/10.1016/j.toxicon.2013.06.017.

25. Krayem N, Gargouri Y. Scorpion venom phospholipases A2: A minireview. Toxicon. 2020; 184, 48-54. https://doi.org/10.1016/j.toxicon.2020.05.020.

26. Estrada-Gomez S, Muñoz LJV, Lanchero P, Latorre CS. Partial characterization of venom from the Colombian spider Phoneutria boliviensis (Aranae:Ctenidae). Toxins. 2015; 7(8), 2872-2887. https://doi.org/10.3390/toxins7082872.

27. Dantas AE, Carmo AO, Horas CCR, Leal HG, Oliveira-Mendes BBR, Martins APV, Chávez-Olórtegui C, Kalapothakis E. Description of Loxtox protein family and identification of a new group of Phospholipases D from Loxosceles similis venom gland. Toxicon. 2016; 120, 97-106. https://doi.org/10.1016/j.toxicon.2016.08.002.

28. Gertsch WJ. The spider genus Loxosceles in South America (Araneae, Scytodidae). Bulletin of the AMNH. 1967; 136(3), 170-173. http://hdl.handle.net/2246/1989.

29. Da Silveira RB, Filho JFS, Mangili OC, Veiga SS, Gremski W, Nader HB, von Dietrich CP. Identification of proteases in the extract of venom glands from brown spiders. Toxicon. 2002; 40(6), 815-822. https://doi.org/10.1016/S0041-0101(02)00078-8.

30. Kalapothakis Y, Miranda K, Pereira AH, Witt ASA, Marani C, Martins AP, Leal HG, Chávez-Olórtegui C, Kalapothakis E. Novel components of Tityus serrulatus venom: A transcriptomic approach. Toxicon. 2021; 189, 91-104. https://doi.org/10.1016/j.toxicon.2020.11.001.

31. Burke JE, Dennis EA. Phospholipase A2 biochemistry. Cardiovascular Drugs and Therapy. 2009; 23, 49-59. https://doi.org/10.1007/s10557-008-6132-9.

32. Kalapothakis YV, Kalapothakis E. (2021). Novos componentes do veneno de Tityus serrulatus: uma abordagem transcriptômica [Master’s dissertation, Universidade Federal de Minas Gerais]. Programa de Pós Graduação em Genética, Belo Horizonte, Brazil. https://www.pggenetica.icb.ufmg.br/defesas/449M.PDF?src=12299.

33. Fremont, DH, Anderson DH, Wilson IA, Dennis EA, Xuong NH. Crystal structure of phospholipase A2 from Indian cobra reveals a trimeric association. Proceedings of the National Academy of Sciences. 1993; 90(1), 342–346 https://doi.org/10.1073/pnas.90.1.342.

34. Stahelin RV, Subramanian P, Vora M, Cho W, Chalfant CE. Ceramide-1-phosphate Binds Group IVA Cytosolic Phospholipase a2 via a Novel Site in the C2 Domain. Journal of Biological Chemistry. 2007; 282(28), 20467–20474 https://doi.org/10.1074/jbc.M701396200.

35. Tang J, Kriz RW, Wolfman N, Shaffer M, Seehra J. A Novel Cytosolic Calcium-independent Phospholipase A2 Contains Eight Ankyrin Motifs. Journal of Biological Chemistry. 1997; 272(13), 8567–8575. https://doi.org/10.1074/jbc.272.13.8567.

36. Estrada-Gómez S, Vargas-Muñoz LJ, Latorre CS, Saldarriaga-Cordoba MM Arenas-Gómez CM. Analysis of high molecular mass compounds from the spider Pamphobeteus verdolaga venom gland. A transcriptomic and MS ID approach. Toxins. 2021; 13(7), 453. https://doi.org/10.3390/toxins13070453.

37. Ivanušec A, Šribar J, Križaj I. Secreted Phospholipases A2 – not just Enzymes: Revisited. International Journal of Biological Sciences. 2022; 18(2), 873-888. https://doi.org/10.7150/ijbs.68093.

38. Murakami M, Sato H, Taketomi Y. Updating phospholipase A2 biology. Biomolecules. 2020; 10(10), 1457. https://doi.org/10.3390/biom10101457.

39. Zambelli VO, Picolo G, Fernandes CAH, Fontes MRM, Cury Y. Secreted phospholipases A2 from animal venoms in pain and analgesia. Toxins. 2017; 9(12), 406. https://doi.org/10.3390/toxins9120406.

40. Estrada-Gómez S, Vargas-Muñoz LJ, Segura Latorre C, Saldarriaga-Cordoba MM, Arenas-Gómez CM. Analysis of High Molecular Mass Compounds from the Spider Pamphobeteus verdolaga Venom Gland. A Transcriptomic and MS ID Approach. Toxins. 2021; 13(7), 453 https://doi.org/10.3390/toxins13070453.

41. Kalapothakis Y, Miranda K, Aragão M, Larangote D, Braga-Pereira G, Noetzold M, Molina D, Langer R, Conceição IM, Guerra-Duarte C, Chávez-Olórtegui C, Chávez-Olórtegui C, Kalapothakis E, Borges A. Divergence in toxin antigenicity and venom enzymes in Tityus melici, a medically important scorpion, despite transcriptomic and phylogenetic affinities with problematic Brazilian species. International Journal of Biological Macromolecules. 2024; 263(2), 130311. https://doi.org/10.1016/j.ijbiomac.2024.130311.

42. Soltan-Alinejad P, Alipour H, Soltani A, Asgari Q, Ramezani A, Mehrabani D, Azizi K. Molecular Characterization and in Silico Analyses of Maurolipin Structure as a Secretory Phospholipase A2 (sPLA2) from Venom Glands of Iranian Scorpio maurus (Arachnida: Scorpionida). Journal of Tropical Medicine. 2022; 2022(1). https://doi.org/10.1155/2022/1839946.

43. Estrada-Gómez S, Vargas Muñoz LJ, Saldarriaga-Córdoba M, Quintana Castillo JC. Venom from Opisthacanthus elatus scorpion of Colombia, could be more hemolytic and less neurotoxic than thought. Acta Tropica. 2016; 153, 70-78. https://doi.org/10.1016/j.actatropica.2015.09.019.

44. Salabi F, Jafari H. Whole transcriptome sequencing reveals the activity of the PLA2 family members in Androctonus crassicauda (Scorpionida: Buthidae) venom gland. FASEB J. 2024; 38(10): e23658. https://doi.org/10.1096/fj.202400178RR.

45. Najafi M, Shahbazzadeh D, Yaghmaie P, Mirzahoseini H. Biochemical characterization and activity profiling of recombinant phospholipase A2 from Hemiscorpius lepturus expressed in E. coli with in vivo antibody response. Sci Rep. 2025; 15: 14609. https://doi.org/10.1038/s41598-025-98261-z.

46. Hariprasad G, Srinivasan A, Singh R. Structural and phylogenetic basis for the classification of group III phospholipase A2. J Mol Model. 2013; 19, 3779–3791. https://doi.org/10.1007/s00894-013-1913-x.

Downloads

Published

2025-10-31

Issue

Section

Artigos

How to Cite

EVIDÊNCIA MOLECULAR DE FOSFOLIPASE A2 (PLA2) NO VENENO DE Loxosceles similis. Acta Biologica Brasiliensia, [S. l.], v. 8, n. 2, p. 227–248, 2025. DOI: 10.18554/acbiobras.v8i2.8771. Disponível em: https://seer.uftm.edu.br/revistaeletronica/index.php/acbioabras/article/view/8771. Acesso em: 5 dec. 2025.