HIDRATAÇÃO DESCONTÍNUA EM SEMENTES DE TRÊS POPULAÇÕES NATURAIS DE Astronium urundeuva (M.Allemão) Engl.
DOI:
https://doi.org/10.18554/acbiobras.v8i2.8709Palavras-chave:
anacardiaceae, aroeira-do-sertão, déficit hídrico, hidrocondicionamento, myracrodruon urundeuvaResumo
O estudo teve o objetivo de avaliar o efeito do hidrocondicionamento, técnica que consiste em ciclos de hidratação e desidratação (HD) controlada, na germinação de sementes de A. urundeuva de três populações naturais de Pernambuco, quando submetidas ao estresse hídrico promovido por solução de polietilenoglicol (PEG 6000) com diferentes potenciais osmóticos (0, -0,1, -0,2, -0,4 e -0,6MPa). As sementes foram submetidas a 0, 1, 2 e ciclos de HD e colocadas para germinar sob a temperatura de 25 °C e foram avaliados parâmetros germinativos. Os dados foram submetidos à ANOVA e ao teste de Tukey a nível de 5% de probabilidade. Foi observado que tanto um, quanto dois ciclos de hidratação descontínua influenciaram positivamente nos parâmetros germinativos das sementes de apenas uma procedência, proc.3, sendo o resultado positivo, superior ao tratamento controle, restrito aos potenciais 0 e -0,2MPa. A proc. 1, comparada as outras, apresentou maiores médias dos parâmetros analisados, porém, não apresentou resposta positiva para o tratamento de HD. Os resultados indicam que é possível haver um fator epigenético e de qualidade fisiológica das sementes, sendo necessário novos estudos com populações diferentes de A. urundeuva para avaliar o comportamento sob estresse hídrico a partir da HD.
Referências
1. Silva LCL, Pirani JR, Pell SK, Mitchell JD. Anacardiaceae in Flora do Brasil 2020 em construção. 2020. Jardim Botânico do Rio de Janeiro. Disponível em: http://floradobrasil.jbrj.gov.br/reflora/floradobrasil/FB115185. Acesso em: 20 maio 2025.
2. Silva NF, Hanazaki N, Albuquerque UP, Campos JLA, Feitosa IS, Araújo EL. Local knowledge and conservation priorities of medicinal plants near a protected area in Brazil. Evidence-Based Complementary and Alternative Medicine. 2019; p. 1–18. https://doi.org/10.1155/2019/8275084.
3. Freitas TAS, Oliveira MF, Souza LS, Dias CN, Quintela MP. Qualidades de mudas de Myracrodruon urundeuva Fr. All. conduzidas sob diferentes volumes de recipientes. Ciencia Florestal. 2022; 32(1):19–42. https://doi.org/10.5902/1980509837445.
4. Bewley JD, Black M. Seeds: Physiology of development, germination and dormancy. New York: Springer; 2013. 392 p.
5. Alvarado LS, Soriano D, Velásquez N, Orozco , Gamboa B. A. Priming effects on seed germination in Tecoma stans (Bignoniaceae) and Cordia megalantha (Boraginaceae), two tropical deciduous tree species. Acta Oecologica. 2014; 61:65–70. https://doi.org/10.1016/j.actao.2014.10.007.
6. Lopes CA, Carvalho MLM, Guimarães RM, Oliveira AMS, Andrade DB. Sodium hypochlorite in the priming of tobacco seeds. Journal of Seed Science. 2019; 41(1):108–111. https://doi.org/10.1590/2317-1545v41n1211719.
7. Kubala S, Wojtyla Ł, Quinet M, Lechowska K, Lutts S, Garnczarska M. Enhanced expression of the proline synthesis gene P5CSA in relation to seed osmopriming improvement of Brassica napus germination under salinity stress. Journal of Plant Physiology. 2015; 183:1–12. https://doi.org/10.1016/j.jplph.2015.04.009.
8. Ribeiro ECG, Reis RGE, Vilar CC, Vilar FCM. Physiological quality of Urochloa brizantha seeds submitted to priming with calcium salts. Pesquisa Agropecuária Tropical. 2019; 49. https://doi.org/10.1590/1983-40632019v4955341.
9. Alves RM, Silva MAD, Silva EF, Alves RJR, Moura DP, Silva JN. Stored diaspores of A. urundeuva Fr. (M. Allemão) Engl. (Anacardiaceae) submitted to hydropriming. Journal of Seed Science. 2020; 42. https://doi.org/10.1590/2317-1545v42236762.
10. Souza LM. de, Conceição, E. M. da, Barbosa MR., Palhares NL., Santos AM. M. dos, Souza, R. A. de, & Houllou, L. M. Effect of seed priming with NaCl on the induction of salinity tolerance in Myracrodruon urundeuva Allemão in vitro. Ciencia Florestal. 2022; 32(4):2199–2218. https://doi.org/10.5902/1980509867600.
11. Gazzola MD, Rovedder APM, Matiello J, Schenato R B, Croda, JP, Camargo B, Piaia BB. Semeadura direta de espécies florestais para restauração ecológica na transição Pampa–Mata Atlântica. Ciencia Florestal. 2023; 33(3):e68327. https://doi.org/10.5902/1980509868327.
12. Sun RZ, Lin CT, Zhang XF, Duan LX, Qi XQ, Gong YH, Deng X. Acclimation-induced metabolic reprogramming contributes to rapid desiccation tolerance acquisition in Boea hygrometrica. Environmental and Experimental Botany. 2018; 148:70–84. https://doi.org/10.1016/j.envexpbot.2018.01.008.
13. Liu X, Quan W, Bartels D. Stress memory responses and seed priming correlate with drought tolerance in plants: an overview. Planta. 2022; 255(2):45. https://doi.org/10.1007/s00425-022-03828-z.
14. Aswathi KPR, Kalaji HM, Puthur JT. Seed priming of plants aiding in drought stress tolerance and faster recovery: a review. Plant Growth Regulation. 2022. https://doi.org/10.1007/s10725-021-00755-z.
15. Souza LM, Conceição EM, Barbosa MR, Palhares NL, Santos AMM, Souza R A, Houllou LM. Effect of seed priming with NaCl on the induction of salinity tolerance in Myracrodruon urundeuva Allemão in vitro. Ciencia Florestal. 2022; 32(4):2199–2218. https://doi.org/10.5902/1980509867600.
16. Spadeto, C, Mengarda LHG., Paulucio MC, Lopes JC, Matheus MT. Embebição, osmocondicionamento e viabilidade de sementes de Apuleia leiocarpa (Vogel.) JF Macbr. Ciencia Florestal. 2018; 28(1):80–89. http://dx.doi.org/10.5902/1980509831582.
17. Forti C, Shankar A, Singh A, Balestrazzi A, Prasad V, Macovei A. Hydropriming and Biopriming Improve Medicago truncatula Seed Germination and Upregulate DNA Repair and Antioxidant Genes. Genes (Basel). 2020 Feb 25;11(3):242.
18. Dubrovsky JG. Discontinuous hydration as a facultative requirement for seed germination in two cactus species of the Sonoran Desert. Journal of the Torrey Botanical Society. 1998; 125(1):33–39. http://dx.doi.org/10.2307/2997229.
19. Forti C, Ottobrino V, Bassolino L, Toppino L, Rotino GL, Rocco M, De Palma M, Mennella G, Gatti I, Lupini A, Montemurro C, Consiglio F, Balestrazzi A, Macovei A. Hydropriming and biopriming improve Medicago truncatula seed germination and upregulate DNA repair and antioxidant genes. Genes. 2020; 11(3):242. https://doi.org/10.3390/genes11030242.
20. Çinar VM, Ünay A. The potential of seed priming on abiotic stress in field crops. In: International Congress on Agriculture, Environment and Health, 7., 2024, Bursa. Anais [...]. Bursa: Bursa Technical University; 2024. Disponível em: https://www.researchgate.net/publication/383084083_The_Potential_of_Seed_Priming_on_Abiotic_Stress_in_Field_Crops. Acesso em: 18 abr. 2025.
21. Jatana BS, Grover S, Ram H, Baath GS. Seed priming: Molecular and physiological mechanisms underlying biotic and abiotic stress tolerance. Agronomy. 2024; 14(12):2901. https://doi.org/10.3390/agronomy14122901.
22. Guedes RS, Alves EU, Gonçalves EP, Bruno RLA, Braga Júnior JM, Colares PNQ. Armazenamento de sementes de Myracrodruon urundeuva Fr. All. em diferentes embalagens e ambientes. Revista Brasileira de Plantas Medicinais. 2012;14(1):68-75. Available from: http://www.scielo.br/pdf/rbpm/v14n1/v14n1a10.
23. Köppen W. Das geographische System der Klimate. In: Köppen W, Geiger R, editors. Handbuch der Klimatologie. Berlin: Gebrüder Borntraeger; 1936.
24. Pimentel F de O, Assis WL. ANÁLISE DA VARIABILIDADE CLIMÁTICA NO MUNICÍPIO DE PETROLINA– PE ENTRE OS ANOS DE 1973-2021. Revista de Geografia - PPGEO - UFJF 2022;12:281–303. https://doi.org/10.34019/2236-837x.2022.v12.39026.
25. Agência Pernambucana de Águas e Clima (APAC). Atlas climatológico do Estado de Pernambuco: normais climatológicas 1991–2020 [Internet]. Recife: APAC; 2023 [cited 2025 Apr 14]. Available from: https://www.apac.pe.gov.br/images/webAtlas-Climatologico-do-Estado-de-Pernambuco-APAC.pdf.
26. Baskin CC, Baskin JM. Seeds: ecology, biogeography, and evolution of dormancy and germination. Amsterdam: Academic Press; 2014. 1600 p.
27. Bewley JD, Black M. Seed: physiology of development and germination. New York: Plenum; 1994. 445 p.
28. Villela FA, Doni Filho L, Sequeira EL. Tabela de Potencial Osmótico em Função da Concentração de Polietileno Glicol 6.000 e da Temperatura. Pesquisa Agropecuária Brasileira. 1991;26(11/12):1957-1968. Disponível em: http://www.alice.cnptia.embrapa.br/alice/handle/doc/106202.
29. Oliveira GM, Silva FFS, Araújo MN, Costa DCC, Gomes SEV, Matias JR, Angelotti F, Cruz CRP, Seal CE, Dantas BF. Environmental stress, future climate, and germination of Myracrodruon urundeuva seeds. Journal of Seed Science. 2019; 41(1):32–43. https://doi.org/10.1590/2317-1545v41n1191945.
30. Senigalia RLC, Kratz D, Coelho MFBC, Camili EC, Arantes CRA, Santos ASRM. Restrição hídrica em teste de sanidade de sementes de Myracrodruon urundeuva Fr. All. / Water restriction in sanity test in diaspores of Myracrodruon urundeuva Fr. All. Brazilian Journal of Development. 2020; 6(7):49617–49627. https://doi.org/10.34117/bjdv6n7-564.
31. Nicolau JPB, Silva FE, Félix FC, Torres SB, Pacheco MV, Pereira MD. Discontinuous hydration on the germination of Mimosa caesalpiniifolia and Pityrocarpa moniliformis seeds under water stress. Revista Caatinga. 2020; 33(2):555–561. https://doi.org/10.1590/1983-21252020v33n228rc.
32. Ferreira WR, Ranal MA, Santana DG. Reference values for germination and emergence measurements. Botany. 2022; 100(5):461–471. https://doi.org/10.1139/cjb-2021-0127.
33. Amir M, Prasad D, Khan FA, Khan A, Ahmad B, Astha. Seed priming: An overview of techniques, mechanisms, and applications. Plant Science Today. 2024; 11(1):553–563. https://doi.org/10.14719/pst.2828.
34. Marcos FJ. Fisiologia de sementes de plantas cultivadas. Piracicaba: FEALQ; 2015. 659 p.
35. Krzyzanowski FC, Dias DCF dos S, França NJB. Deterioração e vigor de sementes. Londrina: Embrapa Soja; 2022. (Circular Técnica, 191). Disponível em: http://www.infoteca.cnptia.embrapa.br/infoteca/handle/doc/1151118.
36. Long RL, Gorecki MJ, Renton M, Scott JK, Colville L, Goggin DE, Commander LE, Westcott DA, Cherry H, Finch-Savage WE. The ecophysiology of seed persistence: a mechanistic view of the journey to germination or demise. Biological Reviews of the Cambridge Philosophical Society. 2015; 90(1):31–59. https://doi.org/10.1111/brv.12095.
37. Souza, L M, Conceição EM, Barbosa MR, Palhares NL, Santos AMM, Souza RA, Houllou LM. Effect of seed priming with NaCl on the induction of salinity tolerance in Myracrodruon urundeuva Allemão in vitro. Ciencia Florestal. 2022; 32(4):2199–2218. https://doi.org/10.5902/1980509867600.
38. Khan MN, Zhang J, Luo T, Liu J, Ni F, Rizwan M, Fahad S, Hu L. Morpho-physiological and biochemical responses of tolerant and sensitive rapeseed cultivars to drought stress during early seedling growth stage. Acta Physiologiae Plantarum. 2019; 41(2):25.
39. Bruce TJA, Matthes MC, Napier JA, Pickett JA. Stressful memories of plants: evidence and possible mechanisms. Plant Science. 2007; 173:603–608. https://doi.org/10.1016/j.plantsci.2007.09.002.
40. Ferreira WN, Lacerda CF, Costa RC, Medeiros filho S. Effect of water stress
on seedling growth in two species with different abundances: the importance of stress resistance syndrome in seasonally dry tropical forest. Acta Botanica Brasilica. 2015; 29(3):375–382. https://doi.org/10.1590/0102-33062014abb0045.
41. Domingos FR, Silva MAP. Uso, conhecimento e conservação de Myracrodruon urundeuva: uma revisão sistemática. Research, Society and Development. 2020; 9(11). http://dx.doi.org/10.33448/rsd-v9i11.8851.
