EFEITOS IN VITRO DOS NANOPLÁSTICOS DE POLIESTIRENO SOBRE A MOTILIDADE E A ATIVIDADE MITOCONDRIAL DE ESPERMATOZOIDES HUMANOS
DOI:
https://doi.org/10.18554/acbiobras.v8i2.8765Keywords:
Plastic, gamete, mitochondria, reproductionAbstract
É estimado que cerca de 350 milhões de toneladas de plástico se tornam resíduos, por meio de processos físicos e químicos, formando microplásticos e nanoplásticos. Considerando a crescente produção global de plásticos e seus potenciais impactos ambientais e à saúde humana, o presente estudo avaliou os efeitos do nanoplástico de poliestireno (NP-PS) sobre parâmetros espermáticos humanos in vitro. Espermatozoides de voluntários saudáveis (n=7) foram obtidos e incluídos apenas se a amostra se enquadrasse dentro dos padrões de normalidade estabelecidos pela Organização Mundial da Saúde. As células foram isoladas por swim-up em meio BWW e expostas a NP-PS em concentrações de 2, 20 e 200 μg/mL, além de grupo controle, por 30 e 120 minutos. A motilidade e atividade mitocondrial foram avaliadas. Os resultados mostraram que concentrações intermediárias e altas reduziram significativamente a motilidade e a funcionalidade mitocondrial, com efeitos dependentes de concentração e tempo. Estes achados indicam que NP-PS pode comprometer funções essenciais à fertilidade masculina, reforçando a necessidade de estudos adicionais sobre seus mecanismos e riscos à saúde reprodutiva.
References
1. Fenichell S. Plastic: The Making of a Synthetic Century. New York: HarperBusiness, 1996.
2. Houssini K, Li J, Tan, Q. Complexities of the global plastics supply chain revealed in a trade-linked material flow analysis. Communications Earth & Environment. 2025; 6: 257. https://doi.org/10.1038/s43247-025-02169-5.
3. Plastics give and plastics take. Nature Reviews Materials. 2022; 7: 67. https://doi.org/10.1038/s41578-022-00419-y.
4. Rodrigues, ACB, de Jesus, GP, Waked, D, Gomes, GL, Silva, TM, Yariwake, VY, da Silva, MP, Magaldi, AJ, Veras, MM. Scientific Evidence about the Risks of Micro and Nanoplastics (MNPLs) to Human Health and Their Exposure Routes through the Environment. Toxics. 2022; 10(6): 308. https://doi.org/10.3390/toxics10060308.
5. Montes-Burgos K, Walczyk D, Hole P, Smith J, Lynch I, Dawson K. Characterisation of nanoparticle size and state prior to nanotoxicological studies. Journal of Nanoparticle Research. 2010; 12(1): 47-53. https://doi.org/10.1007/s11051-009-9774-z.
6. Winiarska E, Jutel M, Zemelka-Wiacek M. The potential impact of nano- and microplastics on human health: Understanding human health risks. Environmental Research. 2024; 251: 118535. https://doi.org/10.1016/j.envres.2024.118535.
7. Oliveira CRF, Maestri G, Tochetto G, Oliveira JL, Stiegelmaier E, Fischer TV, Immich APS. Nanoplastics: Unveiling Contamination Routes and Toxicological Implications for Human Health. Cuttent Analytical Chemistry. 2024; 21(3): 175 - 190. https://doi.org/10.2174/0115734110305991240523073849.
8. Han H, Chang Z, Xu B, Ding L, Yang H, He T, Du X, Pei X, Fu X. Integrated transcriptomic and metabolomic analysis reveals the underlying mechanisms for male reproductive toxicity of polystyrene nanoplastics in mouse spermatocyte-derived GC-2spd(ts) cells. Toxicology in Vitro. 2024; 100: 105893. https://doi.org/10.1016/j.tiv.2024.105893.
9. Gao X, Xu K, Du W, Wang S, Jiang M, Wang Y, Han Q, Chen M. Comparing the effects and mechanisms of exposure to polystyrene nanoplastics with different functional groups on the male reproductive system. The Science of The Total Environment. 2024; 922: 171299. https://doi.org/10.1016/j.scitotenv.2024.171299.
10. Levine H, Jørgensen N, Martino-Andrade A, Mendiola J, Weksler-Derri D, Jolles M, Pinotti R, Swan SH. Temporal trends in sperm count: a systematic review and meta-regression analysis of samples collected globally in the 20th and 21st centuries. Human Reproduction Update. 2022; 29(2): 157–176. https://doi.org/10.1093/humupd/dmac035.
11. Green, MP, Harvey, AJ, Finger, BJ, Tarulli, GA. Endocrine disrupting chemicals: Impacts on human fertility and fecundity during the peri-conception period. Environmental Research. 2021; 194: 110694. https://doi.org/10.1016/j.envres.2020.110694.
12. World Health Organization. WHO laboratory manual for the examination and processing of human semen. World Health Organization; 2021. https://www.who.int/publications/i/item/9789240030787.
13. Biggers JD, Whitten WK, Whittingham DG. Thoughts on embryo culture conditions. Reproductive BioMedicine Online. 2002; 4: 30-38. https://doi.org/10.1016/S1472-6483(12)60009-1.
14. Schirinzini GF, Pérez-Pomeda I, Sanchís J, Rossini C, Farré M, Barceló D. Cytotoxic effects of commonly used nanomaterials and microplastics on cerebral and epithelial human cells. Environmental Research. 2017; 159: 579–587. https://doi.org/10.1016/j.envres.2017.08.043.
15. Hou Z, Meng R, Chen G, Lai T, Qing R, Hao S, Deng J, Wang B. Distinct accumulation of nanoplastics in human intestinal organoids. Science of The Total Environment. 2022; 83: 155811. https://doi.org/10.1016/j.scitotenv.2022.155811.
16. Chen G, Xiong S, Jing S, van Gestel, CAV, van Straalen NM, Roelofs D, Sun L, Qiu H. Maternal exposure to polystyrene nanoparticles retarded fetal growth and triggered metabolic disorders of placenta and fetus in mice. The Science of The Total Environment. 2022; 854: 158666. https://doi.org/10.1016/j.scitotenv.2022.158666.
17. Siqueira S, Ropelle AC, Nascimento JAA, Fazano FAT, Bahamondes LG, Gabiatti JR, Costa-Paiva L, Baccaro LF. Changes in seminal parameters among Brazilian men between 1995 and 2018. Scientific Reports. 2020; 10(1): 6430. https://doi.org/10.1038/s41598-020-63468-9.
18. Dcunha R, Hussein RS, Ananda H, Kumari S, Adiga SK, Kannan N, Zhao Y, Kalthur G. Current Insights and Latest Updates in Sperm Motility and Associated Applications in Assisted Reproduction. Reproductive Sciences. 2020; 29(1): 7–25. https://doi.org/10.1007/s43032-020-00408-y.
19. Contino M, Ferruggia G, Stefania I, Pecorato R, Scalisi EM, Bracchiatta G, Gragotto J, Salvaggio A, Brundo MV. In Vitro Nano-Polystyrene Toxicity: Metabolic Dysfunctions and Cytoprotective Responses of Human Spermatozoa. Biology. 2023; 12(4): 624. https://doi.org/10.3390/biology12040624.
20. Zhang X, Wu Y, Fu Z, He S, Shi L, Xu H, Shi X, Yang Y, Zhu Y, Wang Y, Qiu H, Li H, Li J. Toxicity to the Male Reproductive System after Exposure to Polystyrene Nanoplastics: A Macrogenomic and Metabolomic Analysis. Toxics. 2024; 12(8): 531. https://doi.org/10.3390/toxics12080531.
21. Ebrahim MM, El-Dakdoky MH, El-Shafiey SH, Amer AS. Oral exposure to polystyrene nanoplastics altered the hypothalamic-pituitary-testicular axis role in hormonal regulation, inducing reproductive toxicity in albino rats. Birth Defects Research. 2024; 116(6): e2368. https://doi.org/10.1002/bdr2.2368.
22. Lahnsteiner F, Mansour N, Berger B. Seminal plasma proteins prolong the viability of rainbow trout (Oncorynchus mykiss) spermatozoa. Theriogenology. 2004; 62(5): 801-808. https://doi.org/10.1016/j.theriogenology.2003.12.001.