IN VITRO EFFECTS OF POLYSTYRENE NANOPLASTICS ON HUMAN SPERM MOTILITY AND MITOCHONDRIAL ACTIVITY

Autores

  • Beatriz Teixeira de Oliveira Universidade Federal do Triângulo Mineiro
  • Camila Santos de Carvalho Universidade Federal do Triângulo Mineiro
  • Cristiana Livramento Oliveira Pinto Universidade Federal do Triângulo Mineiro
  • Nicoly Caixêta Gonçalves Universidade Federal do Triângulo Mineiro
  • Hugo Felix Perini Universidade Federal do Triângulo Mineiro
  • Gláucia Siervo Universidade Federal do Triângulo Mineiro

DOI:

https://doi.org/10.18554/acbiobras.v8i2.8765

Palavras-chave:

Plástico, Gameta, Mitocôndria, Reprodução

Resumo

It is estimated that approximately 350 million tons of plastic become waste through physical and chemical processes, generating microplastics and nanoplastics. Considering the increasing global production of plastics and their potential environmental and human health impacts, this study evaluated the effects of polystyrene nanoplastics (PS-NP) on human sperm parameters in vitro. Spermatozoa from healthy volunteers (n=7) were collected and included only if the samples met the World Health Organization’s normality criteria. Cells were isolated using the swim-up technique in BWW medium and exposed to PS-NP at concentrations of 2, 20, and 200 μg/mL, along with a control group, for 30 and 120 minutes. Sperm motility and mitochondrial activity were assessed. The results showed that intermediate and high concentrations significantly reduced motility and mitochondrial functionality in a concentration- and time-dependent manner. These findings suggest that PS-NPs may impair critical functions for male fertility, highlighting the need for further studies to clarify the underlying mechanisms and reproductive health risks.

Referências

1. Fenichell S. Plastic: The Making of a Synthetic Century. New York: HarperBusiness, 1996.

2. Houssini K, Li J, Tan, Q. Complexities of the global plastics supply chain revealed in a trade-linked material flow analysis. Communications Earth & Environment. 2025; 6: 257. https://doi.org/10.1038/s43247-025-02169-5.

3. Plastics give and plastics take. Nature Reviews Materials. 2022; 7: 67. https://doi.org/10.1038/s41578-022-00419-y.

4. Rodrigues, ACB, de Jesus, GP, Waked, D, Gomes, GL, Silva, TM, Yariwake, VY, da Silva, MP, Magaldi, AJ, Veras, MM. Scientific Evidence about the Risks of Micro and Nanoplastics (MNPLs) to Human Health and Their Exposure Routes through the Environment. Toxics. 2022; 10(6): 308. https://doi.org/10.3390/toxics10060308.

5. Montes-Burgos K, Walczyk D, Hole P, Smith J, Lynch I, Dawson K. Characterisation of nanoparticle size and state prior to nanotoxicological studies. Journal of Nanoparticle Research. 2010; 12(1): 47-53. https://doi.org/10.1007/s11051-009-9774-z.

6. Winiarska E, Jutel M, Zemelka-Wiacek M. The potential impact of nano- and microplastics on human health: Understanding human health risks. Environmental Research. 2024; 251: 118535. https://doi.org/10.1016/j.envres.2024.118535.

7. Oliveira CRF, Maestri G, Tochetto G, Oliveira JL, Stiegelmaier E, Fischer TV, Immich APS. Nanoplastics: Unveiling Contamination Routes and Toxicological Implications for Human Health. Cuttent Analytical Chemistry. 2024; 21(3): 175 - 190. https://doi.org/10.2174/0115734110305991240523073849.

8. Han H, Chang Z, Xu B, Ding L, Yang H, He T, Du X, Pei X, Fu X. Integrated transcriptomic and metabolomic analysis reveals the underlying mechanisms for male reproductive toxicity of polystyrene nanoplastics in mouse spermatocyte-derived GC-2spd(ts) cells. Toxicology in Vitro. 2024; 100: 105893. https://doi.org/10.1016/j.tiv.2024.105893.

9. Gao X, Xu K, Du W, Wang S, Jiang M, Wang Y, Han Q, Chen M. Comparing the effects and mechanisms of exposure to polystyrene nanoplastics with different functional groups on the male reproductive system. The Science of The Total Environment. 2024; 922: 171299. https://doi.org/10.1016/j.scitotenv.2024.171299.

10. Levine H, Jørgensen N, Martino-Andrade A, Mendiola J, Weksler-Derri D, Jolles M, Pinotti R, Swan SH. Temporal trends in sperm count: a systematic review and meta-regression analysis of samples collected globally in the 20th and 21st centuries. Human Reproduction Update. 2022; 29(2): 157–176. https://doi.org/10.1093/humupd/dmac035.

11. Green, MP, Harvey, AJ, Finger, BJ, Tarulli, GA. Endocrine disrupting chemicals: Impacts on human fertility and fecundity during the peri-conception period. Environmental Research. 2021; 194: 110694. https://doi.org/10.1016/j.envres.2020.110694.

12. World Health Organization. WHO laboratory manual for the examination and processing of human semen. World Health Organization; 2021. https://www.who.int/publications/i/item/9789240030787.

13. Biggers JD, Whitten WK, Whittingham DG. Thoughts on embryo culture conditions. Reproductive BioMedicine Online. 2002; 4: 30-38. https://doi.org/10.1016/S1472-6483(12)60009-1.

14. Schirinzini GF, Pérez-Pomeda I, Sanchís J, Rossini C, Farré M, Barceló D. Cytotoxic effects of commonly used nanomaterials and microplastics on cerebral and epithelial human cells. Environmental Research. 2017; 159: 579–587. https://doi.org/10.1016/j.envres.2017.08.043.

15. Hou Z, Meng R, Chen G, Lai T, Qing R, Hao S, Deng J, Wang B. Distinct accumulation of nanoplastics in human intestinal organoids. Science of The Total Environment. 2022; 83: 155811. https://doi.org/10.1016/j.scitotenv.2022.155811.

16. Chen G, Xiong S, Jing S, van Gestel, CAV, van Straalen NM, Roelofs D, Sun L, Qiu H. Maternal exposure to polystyrene nanoparticles retarded fetal growth and triggered metabolic disorders of placenta and fetus in mice. The Science of The Total Environment. 2022; 854: 158666. https://doi.org/10.1016/j.scitotenv.2022.158666.

17. Siqueira S, Ropelle AC, Nascimento JAA, Fazano FAT, Bahamondes LG, Gabiatti JR, Costa-Paiva L, Baccaro LF. Changes in seminal parameters among Brazilian men between 1995 and 2018. Scientific Reports. 2020; 10(1): 6430. https://doi.org/10.1038/s41598-020-63468-9.

18. Dcunha R, Hussein RS, Ananda H, Kumari S, Adiga SK, Kannan N, Zhao Y, Kalthur G. Current Insights and Latest Updates in Sperm Motility and Associated Applications in Assisted Reproduction. Reproductive Sciences. 2020; 29(1): 7–25. https://doi.org/10.1007/s43032-020-00408-y.

19. Contino M, Ferruggia G, Stefania I, Pecorato R, Scalisi EM, Bracchiatta G, Gragotto J, Salvaggio A, Brundo MV. In Vitro Nano-Polystyrene Toxicity: Metabolic Dysfunctions and Cytoprotective Responses of Human Spermatozoa. Biology. 2023; 12(4): 624. https://doi.org/10.3390/biology12040624.

20. Zhang X, Wu Y, Fu Z, He S, Shi L, Xu H, Shi X, Yang Y, Zhu Y, Wang Y, Qiu H, Li H, Li J. Toxicity to the Male Reproductive System after Exposure to Polystyrene Nanoplastics: A Macrogenomic and Metabolomic Analysis. Toxics. 2024; 12(8): 531. https://doi.org/10.3390/toxics12080531.

21. Ebrahim MM, El-Dakdoky MH, El-Shafiey SH, Amer AS. Oral exposure to polystyrene nanoplastics altered the hypothalamic-pituitary-testicular axis role in hormonal regulation, inducing reproductive toxicity in albino rats. Birth Defects Research. 2024; 116(6): e2368. https://doi.org/10.1002/bdr2.2368.

22. Lahnsteiner F, Mansour N, Berger B. Seminal plasma proteins prolong the viability of rainbow trout (Oncorynchus mykiss) spermatozoa. Theriogenology. 2004; 62(5): 801-808. https://doi.org/10.1016/j.theriogenology.2003.12.001.

Downloads

Publicado

31-10-2025

Edição

Seção

Artigos

Como Citar

OLIVEIRA, Beatriz Teixeira de; CARVALHO, Camila Santos de; PINTO, Cristiana Livramento Oliveira; GONÇALVES, Nicoly Caixêta; PERINI, Hugo Felix; SIERVO, Gláucia. IN VITRO EFFECTS OF POLYSTYRENE NANOPLASTICS ON HUMAN SPERM MOTILITY AND MITOCHONDRIAL ACTIVITY. Acta Biologica Brasiliensia, [S. l.], v. 8, n. 2, p. 437–449, 2025. DOI: 10.18554/acbiobras.v8i2.8765. Disponível em: https://seer.uftm.edu.br/revistaeletronica/index.php/acbioabras/article/view/8765. Acesso em: 18 dez. 2025.