FORMINS: THE MULTITASKING ACTIN NUCLEATORS IN DENDRITIC CELL BIOLOGY, A LITERATURE REVIEW

Autores

DOI:

https://doi.org/10.18554/acbiobras.v8i2.8483

Palavras-chave:

Formins, Actin cytoskeleton , Immunotherapy, dendritic cells, Cell biology

Resumo

Dendritic cells (DCs) are at the frontline of the immune defense. They are professional antigen-presenting cells capable of linking adaptive and innate Immune responses by interacting with T cells and by secreting cytokines. By performing such activities, they play an ambiguous role, either engaging the adequate immune response or initiating diseases, and thus, they pose as important therapeutic targets for immunotherapies. Such potential is even more significant if we consider the dynamics of the actin cytoskeleton remodeling to perform such roles. The Formin family of actin nucleators performs one of the three actin-regulatory networks. Formins play essential roles in virtually all eukaryotic cells, including DCs. In this way, we reviewed the most prominent functions of formins in DC biology. The most prominent formins playing roles were members of the Diaphanous and FHOS/FHOD subtypes, acting from pathogen recognition and uptaking, T-cell activation, formation of viral synapses/filopodia, migration stability to adhesion and could be considered as biomarkers of inactive and activated states of DCs. These important roles in DCs leave important open questions yet to be answered.

Referências

1. Jiménez-Cortegana C, Palomares F, Alba G, Santa-María C, de la Cruz-Merino L, Sánchez-Margalet V, López-Enríquez S. Dendritic cells: the yin and yang in disease progression. Front Immunol. 2024; (14): e1321051https://pubmed.ncbi.nlm.nih.gov/38239364/.

2. Steinman RM, Cohn ZA. Identification of a novel cell type in peripheral lymphoid organs of mice. II. Functional properties in vitro. J Exp Med. 1974; 139 (2): 380-397. https://pubmed.ncbi.nlm.nih.gov/4589990/.

3. Collin, M, Bigley, V. Human dendritic cell subsets: an update. Immunology. 2018; 154 (1): 3-20.https://pubmed.ncbi.nlm.nih.gov/29313948/.

4. Benze, D, Fekete, T, Pázmándi, K. Type I Interferon Production of Plasmacytoid Dendritic Cells under Control. International Journal of Molecular Sciences, 2021; 22 (8): 4190. https://pubmed.ncbi.nlm.nih.gov/33919546/.

5. Cruvinel W de M, Mesquita Júnior D, Araújo JAP, Catelan TTT, Souza AWS de, Silva NP da, et al.. Sistema imunitário: Parte I. Fundamentos da imunidade inata com ênfase nos mecanismos moleculares e celulares da resposta inflamatória. Rev Bras Reumatol, 2010; 50 (4): 434–447. https://doi.org/10.1590/S0482-50042010000400008.

6. Soto, J. A. The Role of Dendritic Cells During Infections Caused by Highly Prevalent Viruses. Frontiers in Immunology, 2020; (11). https://pubmed.ncbi.nlm.nih.gov/32765522/.

7. Moussion C, Delamarre L. Antigen cross-presentation by dendritic cells: A critical axis in cancer immunotherapy. Semin Immunol. 2024; (71). https://pubmed.ncbi.nlm.nih.gov/38035643/.

8. Domingues, B. A atuação das células dendríticas na manutenção da imunidade. Revista Multidisciplinar em Saúde, 2023; 4 (2). https://ime.events/conbrai2023/pdf/14357.

9. Jamal, ME, Shibli, F. Dendritic cell and co-stimulatory molecule targeted therapy for autoimmune diseases: a review of the newly implemented strategies. Exploratory Immunology, 2024; (4): 189–210. https://doi.org/10.37349/ei.2024.00136.

10. Conti, BJ, Santiago, KB, Sforcin, JM. Células dendríticas: mini-revisão. Biosaúde, 2014; 16 (1): 28-34. https://www.uel.br/revistas/uel/index.php/biosaude/article/view/24351/0.

11. Brooks JW, Tillu V, Eckert J, Verma S, Collins BM, Parton RG, Yap AS. Caveola mechanotransduction reinforces the cortical cytoskeleton to promote epithelial resilience. Mol Biol Cell. 2023; 34 (12) https://pubmed.ncbi.nlm.nih.gov/37672337/.

12. Wang H, Hu J, Yi K, Ma Z, Song X, Lee Y, Kalab P, Bershadsky AD, Miao Y, Li R. Dual control of formin-nucleated actin assembly by the chromatin and ER in mouse oocytes. Curr Biol. 2022; 32 (18): 4013-4024. https://pubmed.ncbi.nlm.nih.gov/35981539/.

13. Parisis N, Krasinska L, Harker B, Urbach S, Rossignol M, Camasses A, Dewar J, Morin N, Fisher D. Initiation of DNA replication requires actin dynamics and formin activity. EMBO J. 2017; 36 (21): 3212-3231. https://pubmed.ncbi.nlm.nih.gov/28982779/.

14. Krause M, Dent EW, Bear JE, Loureiro JJ, Gertler FB. Ena/VASP proteins: regulators of the actin cytoskeleton and cell migration. Annu Rev Cell Dev Biol. 2003; 19: 541-564. https://pubmed.ncbi.nlm.nih.gov/14570581/.

15. Pruyne D. Revisiting the Phylogeny of the Animal Formins: Two New Subtypes, Relationships with Multiple Wing Hairs Proteins, and a Lost Human Formin. PLoS One. 2016; 11 (10): e0164067. https://pubmed.ncbi.nlm.nih.gov/27695129/.

16. Valencia DA, Quinlan ME. Formins. Curr Biol. 2021; 31 (10): R517-R522. https://pubmed.ncbi.nlm.nih.gov/34033783/.

17. Gutiérrez-Martínez E, Benet Garrabé S, Mateos N, Erkizia I, Nieto-Garai JA, Lorizate M, Borgman KJE, Manzo C, Campelo F, Izquierdo-Useros N, Martinez-Picado J, Garcia-Parajo MF. Actin-regulated Siglec-1 nanoclustering influences HIV-1 capture and virus-containing compartment formation in dendritic cells. Elife. 2023; 20 (12): e78836. https://pubmed.ncbi.nlm.nih.gov/36940134/.

18. Vargas P, Barbier L, Sáez PJ, Piel M.. Mechanisms for fast cell migration in complex environments. Current Opinion in Cell Biology 2017; 48:72–78. https://pubmed.ncbi.nlm.nih.gov/28641118/.

19. Descamps D, Evnouchidou I, Caillens V, Drajac C, Riffault S, van Endert P, Saveanu L. The Role of Insulin Regulated Aminopeptidase in Endocytic Trafficking and Receptor Signaling in Immune Cells. Front Mol Biosci. 2020; (7): e583556. https://pubmed.ncbi.nlm.nih.gov/33195428/.

20. Tojo H, Kaieda I, Hattori H, Katayama N, Yoshimura K, Kakimoto S, et al. The Formin family protein, formin homolog overexpressed in spleen, interacts with the insulin-responsive aminopeptidase and profilin IIa. Mol. Endocrinol. 2003; 17: 1216–1229. https://academic.oup.com/mend/article/17/7/1216/275643.

21. Babdor J, Descamps D, Adiko, AC, Tohmé M, Maschalidi S, Evnouchidou I, et al. IRAP+ endosomes restrict TLR9 activation and signaling. Nat. Immunol. 2017; 18: 509–518.https://pubmed.ncbi.nlm.nih.gov/28319098/.

22. Fernandez-Borja M, Janssen L, Verwoerd D, Hordijk P, Neefjes J. . RhoB regulates endosome transport by promoting actin assembly on endosomal membranes through Dia1. J. Cell. Sci. 2005; 118: 2661–2670. https://pubmed.ncbi.nlm.nih.gov/15944396/.

23. Weimershaus M, Mauvais FX, Saveanu L, Adiko C, Babdor J, Abramova A, et al. Innate immune signals induce anterograde endosome transport promoting MHC class I cross-presentation. Cell. Rep. 2018; 24: 3568–3581. https://pubmed.ncbi.nlm.nih.gov/30257216/.

24. Rezaei Z, Tahmasebi A, Pourabbas B. Using meta-analysis and machine learning to investigate the transcriptional response of immune cells to Leishmania infection. PLoS Negl Trop Dis. 2024; 18 (1): e0011892. https://pubmed.ncbi.nlm.nih.gov/38190401/.

25. Kushwaha R, Seth A, Jijumon A, Reshmi P, Dileep D, Datta R, et al.. Leishmania major formins are cytosolic actin bundlers play an important role in cell physiology. bioRxiv. 2021; 4 (12): .https://www.biorxiv.org/lookup/doi/10.1101/2021.04.12.439584.

26. Shrivastava A, Prasad A, Kuzontkoski PM, Yu J, Groopman JE. Slit2N Inhibits Transmission of HIV-1 from Dendritic Cells to T-cells by Modulating Novel Cytoskeletal Elements. Sci Rep. 2015; 5: https://pubmed.ncbi.nlm.nih.gov/26582347/.

27. Aggarwal A, Iemma TL, Shih, I, Newsome, TP, McAllery, S, Cunningham, AL, Turville, SG. Mobilization of HIV spread by diaphanous 2 dependent filopodia in infected dendritic cells. PLoS Pathog 2012; 8: e1002762, https://journals.plos.org/plospathogens/article?id=10.1371/journal.ppat.1002762.

28. Higashi T, Ikeda T, Murakami T, Shirakawa R, Kawato M, Okawa K, Furuse M, Kimura T, Kita T, Horiuchi H. Flightless-I (Fli-I) regulates the actin assembly activity of diaphanous-related formins (DRFs) Daam1 and mDia1 in cooperation with active Rho GTPase. J Biol Chem. 2010; 285 (21):16231-16238, https://pubmed.ncbi.nlm.nih.gov/20223827/.

29. Ostrowski PP, Grinstein S, Freeman SA. Diffusion Barriers, Mechanical Forces, and the Biophysics of Phagocytosis. Dev Cell. 2016; 38 (2): 135-146. https://pubmed.ncbi.nlm.nih.gov/27459066/.

30. Lomakin AJ, Lee KC, Han SJ, Bui DA, Davidson M, Mogilner A, Danuser G. Competition for actin between two distinct F-actin networks defines a bistable switch for cell polarization. Nat Cell Biol. 2015; 17 (11): 1435-1445. https://pubmed.ncbi.nlm.nih.gov/26414403/.

31. Vargas P, Maiuri P, Bretou M, Sáez PJ, Pierobon P, Maurin M, Chabaud M, Lankar D, Obino D, Terriac E, Raab M, Thiam HR, Brocker T, Kitchen-Goosen SM, Alberts AS, Sunareni P, Xia S, Li R, Voituriez R, Piel M, Lennon-Duménil AM. Innate control of actin nucleation determines two distinct migration behaviors in dendritic cells. Nat Cell Biol. 2016; 18 (1): 43-53. https://pubmed.ncbi.nlm.nih.gov/26641718/.

32. Tanizaki H, Egawa G, Inaba K, Honda T, Nakajima S, Moniaga CS, Otsuka A, Ishizaki T, Tomura M, Watanabe T, Miyachi Y, Narumiya S, Okada T, Kabashima K. Rho-mDia1 pathway is required for adhesion, migration, and T-cell stimulation in dendritic cells. Blood. 2010; 116 (26): 5875-5884. https://pubmed.ncbi.nlm.nih.gov/20881208/.

33. Aggarwal A, Iemma TL, Shih I, Newsome TP, McAllery S, Cunningham AL, Turville SG. Mobilization of HIV spread by diaphanous 2 dependent filopodia in infected dendritic cells. PLoS Pathog. 2012; 8 (6): e1002762. https://pubmed.ncbi.nlm.nih.gov/22685410/.

34. Visweswaran SP, Nayab H, Hoffmann L, Gil M, Liu F, Kühne R, Maritzen T. Ena/VASP proteins at the crossroads of actin nucleation pathways in dendritic cell migration. Front Cell Dev Biol. 2022; 10: e1008898. https://pubmed.ncbi.nlm.nih.gov/36274843/.

35. Bruhmann, S, Ushakov, D S, Winterhoff, M, Dickinson, RB, Curth, U, Faix, J. Distinct VASP tetramers synergize in the processive elongation of individual actin filaments from clustered arrays. Proc. Natl. Acad. Sci. U. S. A. 2017; 114 (29): E5815–E5824. https://pubmed.ncbi.nlm.nih.gov/28667124/.

36. Chen XJ, Squarr AJ, Stephan R, Chen B, Higgins TE, Barry, D. J., et al. Ena/VASP proteins cooperate with the WAVE complex to regulate the actin cytoskeleton. Dev. Cell. 2014; 30 (5): 569–584. https://pubmed.ncbi.nlm.nih.gov/25203209/.

37. Naj X, Hoffmann AK, Himmel M, Linder S. The formins FMNL1 and mDia1 regulate coiling phagocytosis of Borrelia burgdorferi by primary human macrophages. Infect Immun. 2013; 81 (5): 1683-1695. https://pubmed.ncbi.nlm.nih.gov/23460512/.

38. Miller MR, Blystone SD. Human Macrophages Utilize the Podosome Formin FMNL1 for Adhesion and Migration. Cellbio (Irvine, Calif). 2015; 4 (1): 1-11. https://pubmed.ncbi.nlm.nih.gov/26942206/.

39. Williams SK, Weiner ZP, Gilmore RD. Human neuroglial cells internalize Borrelia burgdorferi by coiling phagocytosis mediated by Daam1. PLoS One. 2018; 13 (5): e0197413. https://pubmed.ncbi.nlm.nih.gov/29746581/.

Downloads

Publicado

31-10-2025

Edição

Seção

Revisão da Literatura

Como Citar

FORMINS: THE MULTITASKING ACTIN NUCLEATORS IN DENDRITIC CELL BIOLOGY, A LITERATURE REVIEW. Acta Biologica Brasiliensia, [S. l.], v. 8, n. 2, p. 26–51, 2025. DOI: 10.18554/acbiobras.v8i2.8483. Disponível em: https://seer.uftm.edu.br/revistaeletronica/index.php/acbioabras/article/view/8483. Acesso em: 5 dez. 2025.