Evaluation of methylene blue-removal by adsorbents recovered from industrial activity
DOI:
https://doi.org/10.18554/rbcti.v9i3.8175Palavras-chave:
Mining waste, nano iron oxide, basalt, adsorption, textile dyesResumo
The study evaluated the application capacity of materials recovered from mining activities (nano hematite recovered from acid mine drainage and basaltic remineralizer (BR) (rock powder) discarded from quarries) as adsorbents in removing methylene blue dye. The adsorbent materials were characterized and had their zero-charge point determined, with pHPCZ 6.5 for rock powder and 5.5 for hematite. The results showed that the basaltic remineralizer contains 51.1% silicon dioxide, 15.2% hematite, and 13.2% alumina. The analysis also indicated that the levels of heavy metals in the rock powder were within the limits established by CONAMA resolution 420/2008, suggesting safety in its application in the environment. The adsorption tests were performed in batches, using 0.5 g of adsorbent in 100 mL of 10 mg. L-1 methylene blue solution. The experiments were performed in triplicate in the pH range of 2 to 6. The dye removal capacity was satisfactory, with hematite removing an average of 1.73 mg. g-1 and basaltic rock powder 2.08 mg. g-1. The greater efficiency of basaltic rock powder, even with a smaller amount of hematite (approximately 0.08 g), can be attributed to the concomitant presence of alumina, offering more active sites for dye adsorption. This study suggests new possibilities for removing textile dyes from effluents and adds commercial value to basaltic rock powder, a byproduct of the mining industry, and nanoparticles recovered from industrial activity.
Referências
ABNT. Associação Brasileira de Normas e Técnicas. NBR 6457. 3 ed., 2024. Available at: https://www.normas.com.br/autorizar/visualizacao-nbr/1963/identificar/visitante. Accessed on: 2024 Jul. 10.
BRITO, R. S. C., WILDNER, W., LICHT, O. A. B., ARIOLI, E. E. Explanatory text of geological and mineral resources maps of the southwest of the state of Paraná. Brasilia: CPRM, 2006. (CPRM/MINEROPAR Agreement). Available at: https://rigeo.sgb.gov.br/handle/doc/10439. Accessed on: 2024 Feb. 18.
ÇETINTAS, S. An alternative application for reuse of leaching residues: Determination of adsorption behaviour for methylene blue and process optimization. Sustainable Chemistry and Pharmacy, v. 23, p. 100504–100504, 2021. DOI: https://doi.org/10.1016/j.scp.2021.100504
CONAMA. Conselho Nacional do Meio Ambiente.
Resolution 420 of 28 December 2009. Available at: https://www.ibama.gov.br/component/legislacao/?view=legislacao&force=1&legislacao=115509. Accessed on: 2024 Nov. 3.
DI BERNARDO, L.; DANTAS, A. D. B. Water treatment methods and techniques. São Carlos: RiMa, 2005.
EDWARD, W. O. O. Influence of the use of phosphatic and basaltic remineralizators on the occurrence of arbuscular mycorrhizae in cerrado soil. 2016. 45 p. Course Completion Work (Bachelor in Forest Engineering) - University of Brasilia, Brasilia, DF, 2016. Available at: https://bdm.unb.br/bitstream/10483/14043/1/2016_WinnieOkuOliveiraEduard_tcc.pdf. Accessed on: 2024 Feb. 18.
EL GAAYDA, J.; TITCHOU, F. E.; OUKHRIB, R.; KARMAL, I.; OUALID, H. A.; BERISHA, A. et al. Removal of cationic dye from coloured water by adsorption onto hematite-humic acid composite: Experimental and theoretical studies. Separation and Purification Technology, v. 288, p. 120607, 2022. DOI: https://doi.org/10.1016/j.seppur.2022.120607
FAN, E.; HU, F.; MIAO, W.; XU, H.; SHAO, G.; LIU, W. et al. Preparation of g-C3N4/vermiculite composite with improved visible light photocatalytic activity. Applied Clay Science, v. 197, p. 105789, 2020. DOI: https://doi.org/10.1016/j.clay.2020.105789
FLORES, R. G.; ANDERSEN, S. L. F.; MAIA, L. K. K.; JOSÉ, H. J.; MOREIRA, R. F. P. M. Recovery of iron oxides from acid mine drainage and their application as adsorbent or catalyst. Journal of Environmental Management, v. 111, p. 53–60, 2012. DOI: https://doi.org/10.1016/j.jenvman.2012.06.017
HAWERROTH, M. Use of mineral by-product for the removal of the dye Basazol Yellow 5G. 62 p.Work of Course Completion (Bachelor in Chemical Engineering) - Universidade Tecnológica Federal do Paraná, Ponta Grossa, PR, 2020. Available at: http://repositorio.utfpr.edu.br/jspui/handle/1/24002. Accessed on: 2024 Feb.18.
KO?ODY?SKA, D.; The European Union, M.; PYLYPCHUK, I. V.; HUBICKI, Z. Development of New Effective Sorbents Based on Nanomagnetite. Nanoscale Research Letters, v. 11, n. 1, 2016. DOI: https://doi.org/10.1186/s11671-016-1371-3
MANHÃES, J. P. V. T.; NETHERLANDS, J. N. F. DE. Characterization and classification of solid residue "remineralizer granitic" generated in the ornamental stone industry. Nova Chemistry, v. 31, n. 6, p. 1301-1304, 2008. DOI: https://doi.org/10.1590/S0100-40422008000600005
MARTINS, G. R.; RODRIGUES, E.; RODRIGUES, E.; TAVARES, M. I. B. Literature review on degradation and adsorption events in primary and secondary microplastics. Conjectures, v. 23, n. 1, p. 368-390, 2023. DOI: https://doi.org/10.53660/conj-1923-2q10a
MOREIRA, R.; VANDRESEN, S.; LUIZ, D. B.; JOSÉ, H. J.; PUMA, J. L. Adsorption of arsenate, phosphate and humic acids onto acicular goethite nanoparticles recovered from acid mine drainage. Journal of Environmental Chemical Engineering, v. 5, n. 1, p. 652–659, 2017. DOI: https://doi.org/10.1016/j.jece.2016.12.018
MORI, V.; SANTOS, R. L. C. DOS; SOBRAL, L. G. S.; 2017. Silicon metallurgy: processes of obtaining and environmental impacts. STA - 41. Available at: http://mineralis.cetem.gov.br/handle/cetem/328. Accessed on: 2024 Feb.18.
NASCIMENTO, R. F.; LIMA, A. C. A.; VIDAL, C. B.; MELO, D. Q.; RAULINO, G. S. C. Adsorption: theoretical aspects and environmental applications. E-book. 2. ed. Fortaleza: University Press. 2020. (Graduate Studies). Available at: http://www.repositorio.ufc.br/handle/riufc/53271. Accessed on: 2024 Feb.18.
NOGUEIRA, F. G. E.; LOPES, J. H.; SILVA, A. C.; LAGO, R. M; FABRIS, J. D.; OLIVEIRA, L. C. A. Catalysts based on clay and iron oxide for oxidation of toluene. Applied Clay Science, v. 51, n. 3, p. 385–389, 2011. DOI: https://doi.org/10.1016/j.clay.2010.12.007
PEREIRA, J. L. A. S. Preparation and characterization of solid superacid systems based on silica-alumina supported with metallic sulfate. 82 f. Dissertation (Master in Materials Science and Engineering) - Federal University of Amazonas, Manaus, 2017. Available at: https://tede.ufam.edu.br/handle/tede/6325. Accessed on: 2024 Feb.18.
PEREZ, D. V.; CAMPOS, D. V. B.; TEIXEIRA, P. C. Zero load point (PCZ). In: TEIXEIRA, P. C.; DONAGEMMA, G. K.; FONTANA, A.; TEIXEIRA, W. G. (ed.). Manual de métodos de análise de solo. 3. ed. rev. e ampl. Brasilia, DF: Embrapa, 2017. Parte 2, cap. 9, p. 249-254.
PIRES, N. S.; CARDOSO, A. R. Characterization of basaltic remineralizer for application in photo-fenton processes. XL Brazilian. Congress of Particulate Systems. Available at: https://proceedings.science/enemp/enemp-2022/trabalhos/caracterizacao-do-de-rocha-basaltica-para-aplicacao-em-processo-do-tipo-foto?lang=pt-br. Accessed on: 2024 Feb.18.
REGALBUTO, J. R.; ROBLES, J.; The engineering of Pt/Carbon Catalyst Preparation, University of Illinois: Chicago, 2004. Cited in: SILVA, N. C. G.; SOUZA, M. C. M.; SILVA, I. J.; SANTOS, Z. M.; ROCHA, M. V. P. Removal of Reactive Turquoise Blue Dye from Aqueous Solution Using a Non-Conventional Natural Adsorbent. Separation science and technology, v. 50, n. 11, p. 1616–1628, 2015.
RAI, M. Green nanobiotechnology: biosynthesis of metallic nanoparticles and their applications as nanoantimicrobials. Ciência e Cultura, v. 65, n. 3, p. 44–48, 2013. DOI: http://dx.doi.org/10.21800/S0009-67252013000300014
RAMÍREZ-SÁNCHEZ, I. M.; BANDALA, E. R. Use of Ferrate and Ferrites for Water Disinfection. ACS Symposium Series, v. 1238, p. 145–159, 2016. DOI: https://doi.org/10.1021/bk-2016-1238.ch006
RAUEN, T. G.; SCARATTI, G.; GEREMIAS, R.; MOREIRA, R. F. P. M. Ecotoxicity of nanocatalysts of iron oxides, produced from the acid drainage of mine, when subjected to the action of ozone in aqueous medium. Sanitary and Environmental Engineering, v. 26, n. 6, p. 1033-1041, 2021. DOI: https://doi.org/10.1590/S1413-415220200162
SALLA, J. DA S. Nanoparticles of manganese oxide and aluminum applied as catalysts in the ozonization of humic acids. 2017. 108 p. Dissertation (Master’s degree in Chemical Engineering) - Universidade Federal de Santa Catarina, Centro Tecnológico, Programa de Pós-Graduação em Engenharia Química, Florianópolis, SC, 2017. Available at: https://repositorio.ufsc.br/xmlui/bitstream/handle/123456789/178983/347269.pdf;jsessionid=EC33727A821BA532E77187C8954375?%20sequence=1. Accessed on: 2024 Feb.18.
SHRIMALI, K.; JIN, J.; HASSAS, B. V.; WANG, X.; MILLER, J. D. The surface state of hematite and its wetting characteristics. Journal of Colloid and Interface Science, v. 477, p. 16–24, 2016. DOI: https://doi.org/10.1016/j.jcis.2016.05.030
SILVA, M. F.; PINEDA, E. A. G.; BERGAMASCO, R. Application of nanostructured iron oxides as adsorbents and photocatalysts for wastewater pollutant removal. New Chemistry, v. 38, 2014. DOI: https://doi.org/10.5935/0100-4042.20140311
SILVA, W. L. L. Optimization of the methylene blue adsorption process in zeolite A synthesized from a new kaolin occurrence from the region of Bom Jardim de Goiás-GO. 2013. 104 p. Dissertation (Master’s degree) - Federal University of Mato Grosso, Institute of Exact and Earth Sciences, Post-Graduation in Geosciences, Cuiabá, 2013. Available at: https://ri.ufmt.br/bitstream/1/1830/1/DISS_2013_Weber%20Lara%20Lima%20da%20Silva.pdf. Access on: 2024 Feb. 18.
STAUB, C. P. P. Adsorption of Pb2+ by hematite and goethite nanoparticles recovered from acid mine drainage. 2019. Dissertation (Master in Environmental Engineering) - Universidade Tecnológica Federal do Paraná, Francisco Beltrão, PR. 2019.
TOMKELSKI, M. L.; SCREMIN, G.; FAGAN, S. B. Nanoscience and Nanotechnology teaching: perspectives expressed by teachers of basic and higher education. Science & Education (Bauru), v. 25, p. 665-683, 2019. DOI: https://doi.org/10.1590/1516-731320190030014
VINÍCIUS-ARAÚJO, M.; ROCHA, J. V. R.; BAKUZIS, A. F. Magnetic Nanoparticles at the Base of Iron Oxide: Magnetic Properties and Applications in Medicine. Journal of Physics Education, v. 46, n. suppl 1, 2024. DOI: https://doi.org/10.1590/1806-9126-RBEF-2024-0187
YOUSEFI, T.; GOLIKAND, A. N.; MASHHADIZADEH, M. H. Synthesis of iron oxide nanoparticles at low bath temperature: Characterization and energy storage studies. Materials Science in Semiconductor Processing, v. 16, n. 6, p. 1837–1841, 2013. DOI: https://doi.org/10.1016/j.mssp.2013.06.018
Downloads
Publicado
Como Citar
Edição
Seção
Licença
Copyright (c) 2024 Matheus Mineli Jaldy, Alexandre Engel Visentin, Chayanne Paula Pavan Staub, Ana Carolina Costa Gomes, Lismara Aparecida Ferreira da Silva, Michelle Milanês França, Fernanda Batista de Souza, Thalita Grando Rauen
Este trabalho está licenciado sob uma licença Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.