Machine learning for predicting flow and pressure in an oscillating water column wave energy converter

Autores

DOI:

https://doi.org/10.18554/rbcti.v9i3.8183

Palavras-chave:

Wave energy, Computational fluid dynamics, Oscillating water column, Artificial neural networks, Predictive model

Resumo

The use of wave energy presents itself as a renewable alternative, diversifying the energy matrix and reducing the consumption of fossil fuels. One of the prominent devices for ocean wave harvesting is the Oscillating Water Column (OWC), which consists of a hydropneumatic chamber where the oscillation of the water surface compresses the confined air, driving a turbine. This work combines numerical simulation and machine learning algorithms, aiming to develop predictive models for mass flow rate and pressure through the OWC chamber. The database for the models was created using Design of Experiments (DOE) techniques, where different combinations of wave height and wavelength were simulated via Computational Fluid Dynamics (CFD) using the Finite Volume Method (FVM). Subsequently, the wave elevation height data is fed into a fully connected deep neural network, which uses the simulated data for learning and returns predictions based on the provided information. The model's performance is evaluated in terms of a cost function (Mean Squared Error). The employed model allows for the identification of flow rate and pressure peaks for the wave period provided at the input, and the results show differences of up to 5% in RMS (Root Mean Square) between the predictions and the CFD data. The main contribution of this work lies in the use of machine learning in predicting traditional operating conditions of an OWC device, introducing a concept that can be applied in the early stages of the design of such devices.

Biografia do Autor

Eduardo Henrique Taube Cunegatto, Universidade do Vale do Rio dos Sinos (UNISINOS)

Aluno do Curso de Doutorado em Computação Aplicada, Universidade do Vale do Rio dos Sinos, São
Leopoldo, Rio Grande do Sul, Brasil.

Lenon Audibert Cisco, Universidade Federal do Rio Grande do Sul (UFRGS)

Aluno do Curso de Doutorado em Engenharia Mecânica, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brasil.

Flávia Schwarz Franceschini Zinani, Universidade Federal do Rio Grande do Sul (UFRGS)

Professor do Instituto de Pesquisas Hidráulicas, Universidade Federal do Rio Grande do Sul, Porto Alegre,
Rio Grande do Sul, Brasil.

Sandro José Rigo, Universidade do Vale do Rio dos Sinos (UNISINOS)

Professor do Programa de Pós-Graduação em Computação Aplicada, Universidade do Vale do Rio dos
Sinos, São Leopoldo, Rio Grande do Sul, Brasil.

Referências

ABADI, M. et al. 2015. TensorFlow: Large-Scale Machine Learning on Heterogeneous Distributed Systems. Software available from tensorflow.org.

AHMAD, I.; M’ZOUGHI, F.; ABOUTALEBI, P.; GARRIDO, I.; GARRIDO, A.J. A regressive machine?learning approach to the non?linear complex FAST model for hybrid floating offshore wind turbines with integrated oscillating water columns. Scientific Reports, v. 13, 2023. DOI: https://doi.org/10.1038/s41598-023-28703-z

ANSYS® Fluent, Release 2023 R2, Help System, Ansys Fluent Theory Guide, ANSYS, Inc.

CHOLLET, F. et al. 2015. Keras. Available at: https://github.com/fchollet/keras.

DING, J.; PANG, S.; CHEN, Z. Optimization of the chamber of OWC to improve hydrodynamic performance. Ocean Engineering, v. 287, 2023. DOI: https://doi.org/10.1016/j.oceaneng.2023.115782

GARCIA-TERUEL, A.; FOREHAND, D.I.M. A review of geometry optimisation of wave energy converters. Renewable and Sustainable Energy Reviews, v. 139, 2021. DOI: https://doi.org/10.1016/j.rser.2020.110593

GEORGE, A.; CHO, I.H.; KIM, M.H. Optimal Design of a U-Shaped Oscillating Water Column Device Using an Artificial Neural Network Model. Processes, v. 9, 2021. DOI: https://doi.org/10.3390/pr9081338

GÉRON, A. Hands-on Machine Learning with Scikit-Learn, Keras, and TensorFlow. O’Reilly Media, v. 2, 2019.

GOSWAMI, T.; SINHA, G.R. Statistical Modeling in Machine Learning. Academic Press, v. 1, 2022.

HIRT, C.W.; NICHOLS, B.D. Volume of fluid (VOF) method for the dynamics of free boundaries. Journal of Computational Physics, v. 39, pp. 201-225, 1981. DOI: https://doi.org/10.1016/0021-9991(81)90145-5

KHALEGHI, S.; LIE, T.T.; BAGULEY, C. An Overview of the Oscillating Water Column (OWC) Technologies: Issues and Challenges. Journal of Basic & Applied Sciences, pp. 98-118, 2022. DOI: https://doi.org/10.29169/1927-5129.2022.18.11

LETZOW, M.; LORENZINI, G.; BARBOSA, D. V. E.; HÜBNER, R. G.; ROCHA, L. A. O.; GOMES, M. N. et al. Numerical Analysis of the Influence of Geometry on a Large Scale Onshore Oscillating Water Column Device with Associated Seabed Ramp. International Journal of Design & Nature and Ecodynamics, v. 15, pp. 873-884, 2020. DOI: https://doi.org/10.18280/ijdne.150613

LIMA, Y. T. B; ISOLDI, L. A.; SANTOS, E. D.; MACHADO, B. N.; GOMES, M. N.; BISERNI, C. et al. Study of the Geometry of an Oscillating Water Column Device with Five Chambers Coupled under Regular Waves through the Constructal Design Method. Fluids, v. 9, 2024. DOI: https://doi.org/10.3390/fluids9040086

LIMA, Y.T.B.; GOMES, M.N.; CARDOZO, C.F.; ISOLDI, L.A.; SANTOS, E.D.; ROCHA, L.A.O. Analysis of Geometric Variation of Three Degrees of Freedom through the Constructal Design Method for a Oscillating Water Column Device with Double Hidropneumatic Chamber. Defect and Diffusion Forum, v. 396, pp. 22-31, 2019. DOI: https://doi.org/10.4028/www.scientific.net/DDF.396.22

LISBOA, R.C.; TEIXEIRA, P.R.F.; DIDIER, E. Regular and Irregular Wave Propagation Analysis in a Flume with Numerical Beach Using a Navier-Stokes Based Model. Defect and Diffusion Forum, v. 372, pp. 81-90, 2017. DOI: https://doi.org/10.4028/www.scientific.net/DDF.372.81

LÓPEZ, I.; IGLESIAS, G. Efficiency of OWC wave energy converters: A virtual laboratory. Applied Ocean Research, v. 44, pp. 63-70, 2014. DOI: http://dx.doi.org/10.1016/j.apor.2013.11.001

MAHDY, A.; HASANIEN, H.M.; ABDEL ALEEM, S.H.E.; AL-DHAIFALLAH, M.; ZOBAA, A.F.; ALI, Z.M. State-of-the-Art of the most commonly adopted wave energy conversion systems. Ain Shams Engineering Journal, v. 15, 2024. DOI: https://doi.org/10.1016/j.asej.2023.102322

MAHMOUD, M.; ADBELKAREEM, M.A.; OLABI, A.G. Wave energy extraction Technologies. Renewable Energy – Volume 2: Wave, Geothermal, and Bioenergy. 2021. Cap. 1-3, pp. 37-51.

MAVRIPLIS, D.J. Unstructured Grid Techniques. Annual Reviews of Fluid Mechanics, v. 29, pp. 473-514, 1997. DOI: https://doi.org/10.1146/annurev.fluid.29.1.473

MISIULIA, D.; ELSAYED, K.; ANDERSSON, A. G. Geometry optimization of a deswirler for cyclone separator in terms of pressure drop using CFD and artificial neural network. Separation and Purification Technology, v. 185, pp. 10-23, 2017. DOI: https://doi.org/10.1016/j.seppur.2017.05.025

MONTGOMERY, D.C. Design and Analysis of Experiments. John Wiley & Sons, v. 8, 2012.

PATANKAR, S. V. Numerical Heat Transfer and Fluid Flow. McGraw-Hill, New York, 1980.

REHMAN, S.; ALHEMS, L.M.; ALAM, M.M.; WANG, L.; TOOR, Z. A review of energy extraction from wind and ocean: Technologies, merits, efficiencies, and cost. Ocean Engineering, v. 267, 2023. DOI: https://doi.org/10.1016/j.oceaneng.2022.113192

SEO, D.; HUH, T.; KIM, M.; HWANG, J.; JUNG, D. Prediction of Air Pressure Change Inside the Chamber of na Oscillating Water Column–Wave Energy Converter Using Machine-Learning in Big Data Platform. Energies, v. 14, 2021. DOI: https://doi.org/10.3390/en14112982

SHADMANI, A.; NIKOO, M.R.; GANDOMI, A.H.; WANG, R.Q.; GOLPALVAR, B. A review of machine learning and deep learning applications in wave energy forecasting and WEC optimization. Energy Strategy Reviews, v. 49, 2023. DOI: https://doi.org/10.1016/j.esr.2023.101180

SHENG, W.; ALCORN, R.; LEWIS, A. On thermodynamics in the primary power conversion of oscillating water column wave energy converters. Journal of Renewable and Sustainable Energy, v. 5, 2013. DOI: http://dx.doi.org/10.1063/1.4794750

SILVA, J.M.; VIEIRA, S.M.; VALÉRIO, D.; HENRIQUES, J.C.C.; SCLAVOUNOS, P.D. Air pressure forecasting for the Mutriku oscillating-water-column wave power plant: Review and case study. IET Renewable Power Generation, v.15, pp. 3485-3503, 2021. DOI: https://doi.org/10.1049/rpg2.12289

STEIN, M. Large Sample Properties of Simulations Using Latin Hypercube Sampling. Technometrics, v. 29, n. 2, p. 143-151, 1987. DOI: https://doi.org/10.2307/1269769

TEIXEIRA, P.R.F.; DIDIER, E. Numerical analysis of the response of an onshore oscillating water column wave energy converter to random waves. Energy, v. 220, 2021. DOI: https://doi.org/10.1016/j.energy.2020.119719

YANG, J.; PALAZZOLO, A. Deep convolutional autoencoder augmented CFD thermal analysis of bearings with inter pad groove mixing. International Journal of Heat and Mass Transfer, v. 188, 2022. DOI: https://doi.org/10.1016/j.ijheatmasstransfer.2022.122639

ZINANI, F.S.F. Fluidodinâmica Computacional e otimização de conversores de energia das ondas do mar. Revista 3S, pp. 33-37, 2023.

Downloads

Publicado

2024-12-20

Como Citar

Cunegatto, E. H. T., Cisco, L. A., Zinani, F. S. F., & Rigo, S. J. (2024). Machine learning for predicting flow and pressure in an oscillating water column wave energy converter. Revista Brasileira De Ciência, Tecnologia E Inovação, 9(3), 317–332. https://doi.org/10.18554/rbcti.v9i3.8183

Edição

Seção

Artigos