Thermal modelling of Green Roofs
DOI:
https://doi.org/10.18554/rbcti.v9i3.8185Palavras-chave:
GAMLSS, Meteorological variables, Urban Heat IslandResumo
Urban changes highlight the need for expand vegetated spaces in built environments. In this sense, green roofs represent a valuable opportunity due to their potential to provide ecosystem services. Among the components of green roofs, substrates are essential and can be optimized to enhance their thermal properties, thus influencing heat transfer into buildings. Using additives in substrates for thermal optimization is a promising approach, especially when these additives include environmental by-products that make the substrates lighter and more cost-effective. The thermal performance of green roofs is also influenced by meteorological conditions that regulate substrate temperatures. This study conducted thermal modeling of the internal temperature of five green roof substrates by using generalized additive models and linear models based. Data collected during the summer months of 2021 and 2022 from five identical green roofs, except for their substrate composition - local soil (SOIL), commercial substrate (SCOM), and three mixtures incorporating carbonized rice husk, construction waste, vermiculite, and vermicompost into the local soil (SC2, SC4 and SC5) - were assessed. The correlation between monitored temperatures and meteorological variables was also assessed. The results showed correlations ranging from moderate to strong between the internal temperature of the substrates and climatic variables, especially temperature and humidity. It was proposed a predictive model for the internal temperatures of green roofs, achieving a Nash-Sutcliffe coefficient of up to 0.86, effectively evaluating the thermal benefits of green roofs under different meteorological conditions.
Referências
BLISS, D. J. Stormwater runoff mitigation and water quality improvements through the use a green roof in Pittsburgh, PA, Tese de Doutorado, University of Pittsburgh, 2007.
CASCONE, S.; GAGLIANO, A.; POLI, T.; SCIUTO, G.Thermal performance assessment of extensive green roofs investigating realistic vegetation-substrate configurations. Building Simulation, v. 12, n. 3, p. 379-393, 2019.
COUTTS, A, M.; DALY, E.; BERINGER, J.; TAPPER, N. J. Assessing practical measures to reduce urban heat: Green and cool roofs. Building and Environment, v. 70, p. 266-276, 2013.
EPA. Environmental Protection Agency. Reducing Urban Heat Islands: Compendium of Strategies Urban Heat Island Basics, US Environmental Protection Agency: Washington, DC, USA, p. 1–22, 2008.
FLL. Guidelines for the Planning, Construction and Maintenance of Green Roofing, English ed. Forschungsgesellschaft landschaftsentwicklung landschaftsbau, Bonn, (German edition), 2018.
FRANCIS, L. F. M.; JENSEN, M. B. Benefits of green roofs: a systematic review of the evidence for three ecosystem services. Urban For Urban Green, v. 28, p. 167–176, 2017.
GONG, Y.; YIN, D.; FANG, X.; LI, J. Factors affecting runoff retention performance of extensive green roofs. Water, v, 10, n. 9, p. 1217, 2018.
GUERRINI, I. A.; TRIGUEIRO, R. M. Atributos físicos e químicos de substratos compostos por biossólidos e casca de arroz carbonizada. Revista Brasileira de Ciência do Solo, v. 28, p. 1069-1076, 2004.
HOPKINS, W. G. Correlation coefficient: a new view of statistics, 2000. Disponível em: https://complementarytraining.net/wp-content/uploads/2013/10/Will-Hopkins-A-New-View-of-Statistics.pdf. Acesso em: 02 ago. 2024.
INMET. Instituto Nacional de Meteorologia. Gráficos Climatológicos, Santa Maria. 2022. Disponível em: https://clima.inmet.gov.br/GraficosClimatologicos/RS/83936. Acesso em: 02 ago. 2024.
LATA, J.-C.; DUSZA, Y.; ABBADIE, L.; BAROT, S.; CARMIGNAC, D.; GENDREAU, E. et al. Role of substrate properties in the provision of multifunctional green roof ecosystem services. Applied Soil Ecology, v. 123, p. 464-468, 2018.
LI, D.; BOU-ZEID, E.; OPPENHEIMER, M. The effectiveness of cool and green roofs as urban heat island mitigation strategies. Environmental Research Letters, v. 9, n. 5, p. 055002, 2014.
LI, Y.; DING, X.; GUO, Y.; RONG, C.; WANG, L.; QU, Y.; MA, X.; WANG, Z. 2011.A new method of comprehensive utilization of rice husk. Journal of hazardous materials, v. 186, n. 2-3, p. 2151-2156, 2011.
LIBERALESSO, T. Telhados Verdes Extensivos: Influência da Composição do Substrato na Retenção Hídrica e no Desenvolvimento da Vegetação. Dissertação (Mestrado em Engenharia Ambiental) – Universidade Federal de Santa Maria, Santa Maria, 2018.
LIBERALESSO, T.; TASSI, R.; CECONI, D. E.; ALLASIA, D, G.; ARBOIT, N. K. S. Effect of rice HUSK addition on the physicochemical and hydrological properties on green roof substrates under subtropical climate conditions. Journal of Cleaner Production, p. 128133, 2021.
LÖBLER, C. A.; SCCOTI, A. A. V.; WERLANG, M. K. Contribuição à delimitação dos biomas Pampa e Mata Atlântica no município de Santa Maria, RS. Eletrônica Gestão Educação Tecnol, Ambiental, v. 19, n. 2, p. 1250–1257, 2015.
MAYER, F. D.; HOFFMANN, R.; RUPPENTHAL, J. E. Gestão Energética, Econômica e Ambiental do Resíduo Casca de Arroz em Pequenas e Médias Agroindústrias de Arroz, In: Simposio de Engenharia de Produçao da UNESP, 13, Bauru, SP, Anais eletrônicos, Bauru: UNESP, 2006.
MARASCO, D. E.; HUNTER, B. N.; CULLIGAN, P. J.; GAFFIN, S. R.; MCGILIS, W. R. Quantifying evapotranspiration from urban green roofs: A comparison of chamber measurements with commonly used predictive methods. Environmental Science & Technology, v. 48, n. 17, p. 10273-10281, 2014.
NARANJO, A.; COLONIA, A.; MESA, J.; MAURY-RAMIREZ, A. Evaluation of semi-intensive green roofs with drainage layers made out of recycled and reused materials. Coatings, v. 10, n. 6, p. 525, 2020a.
NARANJO, A.; COLONIA, A.; MESA, J.; MAURY, H.; MAURY-RAMIREZ, A. State-of-the-art green roofs: Technical performance and certifications for sustainable construction. Coatings, v. 10, n. 1, p. 69, 2020b.
R Core Team. 2017. R: a Language and Environment for Statistical Computing, R Foudation for Statistical Computing, Viena, Disponível em: http://www.r-project.org. Acesso em: 02 ago. 2024.
SHAFIQUE, M.; KIM, R.; RAFIQ, M. Green roof benefits, opportunities and challenges–A review. Renewable and Sustainable Energy Reviews, v. 90, p. 757-773, 2018.
SPROUL, J.; WAN, M. P.; MANDEL, B, H.; ROSENFELD, A. H. 2014. Economic comparison of white, green, and black flat roofs in the United States, Energy and Buildings, v. 71, p. 20-27, 2014.
SUSCA, T.; GAFFIN, S. R.; DELL’OSSO, G. R. Positive effects of vegetation: Urban heat island and green roofs. Environmental pollution, v. 159, n. 8-9, p. 2119-2126, 2011.
VANDEGRIFT, D. A.; ROWE, D. R.; CREGG, B. M.; LIANG, D. Effect of substrate depth on plant community development on a Michigan green roof. Ecological Engineering, v. 138, p. 264-273, 2019.
VLAEV, L. T.; MARKOVSKA, I. G.; LYUBCHEV, L. A. 2003. Non-isothermal kinetics of pyrolysis of rice husk. Thermochimica Acta, v. 406, n. 1-2, p. 1-7, 2003.
WEGGEMANS, J.; SANTOS, M. L.; FERREIRA, F.; MORENO, G. D.; MATOS, J. S. Modeling the Hydraulic Performance of Pilot Green Roofs Using the Storm Water Management Model: How Important Is Calibration?. Sustainability, v. 15, p. 14421, 2023.
WMO. World Meteorological Organization. Guide to climatological practices. Geneva: WMO, 2018.
ZHANG, S.; LIN, Z.; ZHANG, S.; GE., D. Stormwater retention and detention performance of green roofs with different substrates: Observational data and hydrological simulations, Journal of Environmental Management. v. 291, p. 112682, 2021.
ZINZI, M.; AGNOLI, S. Cool and green roofs: An energy and comfort comparison between passive cooling and mitigation urban heat island techniques for residential buildings in the Mediterranean region. Energy and Buildings, v. 55, p. 66-76, 2012.
Downloads
Publicado
Como Citar
Edição
Seção
Licença
Copyright (c) 2024 Fabiana Campos Pimentel, Rutineia Tassi
Este trabalho está licenciado sob uma licença Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.