Climate, socioeconomic factors and spatial distribution of some worldwide arboviruses: a review of the literature
DOI:
https://doi.org/10.18554/rbcti.v8i1.6971Keywords:
Dengue vírus, Zika vírus, Chikungunya vírus, Social Indicators, Environmental IndicatorsAbstract
The spread of arboviruses can be influenced by factors such as climate, socioeconomic and spatial distribution. The identification of populations at highest risk of exposure to arboviruses is an important topic in the public health scenario. Therefore, the present study is a review of the literature, which aimed to identify the association between the spatial distribution of Dengue Virus, Zika Virus and Chikungunya Virus and the social, environmental and economic aspects of individuals affected by arboviruses, the based on the analysis of published literature on the topic. Articles published in Portuguese, Spanish and English between 1997 and 2019 were included; and studies that addressed the clinic, infection, molecular biology, genetics, entomology and microbiology of viruses and mathematical modeling studies and reviews were excluded. The search for articles was carried out in the IBECS databases; CINAHL; MEDLINE; PubMed; Web of Science. After data mapping, PRISMA was used to extract the data. Therefore, of the 32 articles included in the analysis, the results showed that climatic factors such as temperature and precipitation affect the origin, evolution and distribution of vectors; and, consequently, the transmission of related pathogens. Furthermore, when considering socioeconomic aspects, populations from regions with greater social vulnerability are at greater risk of becoming ill from an arbovirus. Therefore, these results suggest that climatic factors and socioeconomic aspects are associated with the spatial distribution of arboviruses, making it essential to develop efficient control and prevention measures for arboviruses, especially in the most vulnerable regions.
References
ACHARYA, B. K.; CAO, C.; LAKES, T.; CHEN, W.; NAEEM, S. Spatiotemporal analysis of dengue fever in Nepal from 2010 to 2014. BMC public health, v. 16, n. 1, p.1-10, 2016. DOI: https://doi.org/10.1186/s12889-016-3432-z.
AGUIAR, B.; LORENZ, C.; VIRGINIO, F.; SUESDEK, L.; CHIARAVALLOTI-NETO, F. Potential risks of Zika and chikungunya outbreaks in Brazil: A modeling study. International Journal of Infectious Diseases, v. 70, p. 20-29, 2018. DOI: https://doi.org/10.1016/j.ijid.2018.02.007.
AHMAD, R.; SUZILAH, I;. WAN NAJDAH, W. M. A.; TOPEK, O.; MUSTAFAKAMAL, I.; LEE, H. L. Factors determining dengue outbreak in Malaysia. PLoS one, v. 13, n. 2, p.1-13, 2018. DOI: https://doi.org/10.1371/journal.pone.0193326.
ALMEIDA, L. S.; COTA, A. L. S.; RODRIGUES, D. F. Saneamento, Arboviroses e Determinantes Ambientais: impactos na saúde urbana. Ciência & Saúde Coletiva, v. 25, p. 3857-3868, 2020. DOI: https://doi.org/10.1590/1413-812320202510.30712018.
ARAÚJO, E. O. As Arboviroses e o uso de Podcasts como ferramenta facilitadora no processo ensino aprendizagem e promoção a saúde na escola. 2020. Dissertação de Mestrado. Universidade Federal de Pernambuco. DOI: https://repositorio.ufpe.br/handle/123456789/40666.
GONZÁLEZ, P. I. A.; ESCOBAR, C. E. Enfermedades de transmisión vectorial potencialmente emergentes en la cuenca mediterránea y su posible relación con el cambio climático. Revista de la Sociedad Española de Medicina de Urgencias y Emergencias, ISSN 1137-6821, v. 23, n. 5, p. 386-393, 2011. Disponível em: http://hdl.handle.net/10651/9623. Acesso em: 28 mar. 2020.
ARUNACHALAM, N.; TANA, S.; ESPINO, F.; KITTAYAPONG, P.; ABEYEWICKREME, W.; WAI, K. et al. Eco-bio-social determinants of dengue vector breeding: a multicountry study in urban and periurban Asia. Bulletin of the World Health Organization. v. 88, n. 3, p. 173-184, 2010. DOI: https://doi.org/10.2471/BLT.09.067892.
ASTUTI, E.; DHEWANTARA, P.; PRASETYOWATI, H.; IPA, M.; HERAWATI, C.; HENDRAYANA, K. et al. Paediatric dengue infection in Cirebon, Indonesia: a temporal and spatial analysis of notified dengue incidence to inform surveillance. Parasites & Vectors, v. 12, p.1-12, 2019. DOI: https://doi.org/10.1186/s13071-019-3446-3.
BARCELLOS, C.; MONTEIRO, A.; CORVALÁN, C.; GURGEL, H.; CARVALHO, M.; ARTAXO, P. et al. Mudanças climáticas e ambientais e as doenças infecciosas: cenários e incertezas para o Brasil. Epidemiologia e Serviços de Saúde, Brasília, v. 18, n. 3, p. 285-304, 2009. Disponível em: http://scielo.iec.gov.br/scielo.php?script=sci_abstract&pid=S1679-49742009000300011&lng=pt&nrm=is. Acesso em: 28 mar. 2020.
BARCELLOS, C.; PUSTAI, A.; WEBER, M.; BRITO, M. Identificação de locais com potencial de transmissão de dengue em Porto Alegre através de técnicas de geoprocessamento. Revista da Sociedade Brasileira de Medicina Tropical, v. 38, n. 3, p. 246-250, 2005. DOI: https://doi.org/10.1590/S0037-86822005000300008.
BUTTERWORTH, M.; MORIN, C.; COMRIE, A. An Analysis of the Potential Impact of Climate Change on Dengue Transmission in the Southeastern United States. Environmental Health Perspectives, v. 125, n. 4, p. 579-585, 2017. DOI: https://doi.org/10.1289/EHP218.
CAMINADE, C.; TURNER, J.; METELMANN, S.; HESSON, J.; BLAGROVE, M.; SOLOMON, T. et al. Global risk model for vector-borne transmission of Zika virus reveals the role of El Niño 2015. Proceedings of the National Academy of Sciences, v. 114, n. 1, p. 119-124, 2016. DOI: https://doi.org/10.1073/pnas.1614303114.
CAMPOS, M. C.; DOMBROWSKI, J. G.; PHELAN, J.; MARINHO, C. R. F.; HIBBERD, M.; CLARK, T. G. et al. Zika might not be acting alone: Using na ecological study approach to investigate potential co-acting risk factors for na unusual pattern of microcephaly in Brazil. PLoS ONE, v. 13, n. 8, p. 1-16, 2018. DOI: https://doi.org/10.1371/journal.pone.0201452.
CARABALÍ, J. M.; HENDRICKX, D. Dengue and health care access: the role of social determinants of health in dengue surveillance in Colombia. Global Health Promotion, v. 19, n. 4, p. 45-50, 2012. DOI: https://doi.org/10.1177/1757975912464250.
CARBAJO, A. E.; CARDO, M. V.; VEZZANI, D. Is temperature the main cause of dengue rise in non-endemic countries? The case of Argentina. International Journal of Health Geographics, v. 11, n. 1, p. 1-11, 2012. DOI: https://doi.org/10.1186/1476-072X-11-26.
CHOTIWAN, N.; VARGUS, I. S.; GRABOWSKI J. M.; HOPF-JANNASCH, A.; HEDRICK, V.; GOUGH, E. et al. Impact of Dengue Virus Infection on Global Metabolic Alterations in the Aedes aegypti Mosquito Vector. European Journal of Molecular & Clinical Medicine, v. 2, p. 130, 2015. Disponível em: https://www.sciencedirect.com/science/article/abs/pii/S2307502315000806. Acesso em: 07 abr. 2020.
CORDEIRO, R.; DONALISIO, M.; ANDRADE, V.; MAFRA, A.; NUCCI, L.; BROWN, J. et al. Spatial distribution of the risk of dengue fever in southeast Brazil, 2006-2007. BMC Public Health, v. 11, n. 1, p. 1-10, 2011. DOI: https://doi.org/10.1186/1471-2458-11-355.
DONALISIO, M. R.; FREITAS, A. R. R.; ZUBEN, A. P. B. V. Arboviroses emergentes no Brasil: desafios para a clínica e implicações para a saúde pública. Revista de Saúde Pública, v. 51, p. 1-6, 2017. DOI: https://doi.org/10.1590/S1518-8787.2017051006889.
FABBRI, S.; SILVA, C.; HERNANDES, E.; OCTAVIANO, F.; DI THOMMAZO, A.; BELGAMO, A. Improvements in the StArt tool to better support the systematic review process. In: Proceedings of the 20th International Conference on Evaluation and Assessment in Software Engineering (EASE ’16). 2016.
FAREED, N.; GHAFFAR, A.; MALIK, T. S. Spatio-Temporal Extension and Spatial Analyses of Dengue from Rawalpindi Islamabad and Swat during 2010-2014. Climate, v. 4, n. 2, p. 1-18, 2016. DOI: https://doi.org/10.3390/cli4020023.
SIQUEIRA J. B.; MARTELLI C. M. T.; COELHO, G. E.; SIMPLÍCIO, A. C. R. Hatch D. Dengue and Dengue Hemorrhagic Fever, Brazil, 1981–2002. Emerging Infectious Diseases, v. 11, n. 1, p. 48-53, 2005. DOI: https://doi.org/10.3201/eid1101.031091.
FERREIRA, A. C.; NETO, F. C. Infestação de área urbana por Aedes aegypti e relação com níveis socioeconômicos. Revista de Saúde Pública, v. 41, n. 6, p. 915-922, 2007. DOI: https://doi.org/10.1590/S0034-89102007000600005.
FERREIRA M. C. Geographical distribution of the association between El Niño South Oscillation and dengue fever in the Americas: a continental analysis using geographical information system-based techniques. Geospatial health, v. 9, n. 1, p. 141-151, 2014. DOI: https://doi.org/10.4081/gh.2014.12.
FISCHER, D.; THOMAS, S. M.; SUK, J. E.; SUDRE, B.; HESS, A.; TJADEN, N. B.et al. Climate change effects on Chikungunya transmission in Europe: geospatial analysis of vector’s climatic suitability and virus’ temperature requirements. International Journal of Health Geographics, v. 12, n. 1,51, 2013. DOI: https://doi.org/10.1186/1476-072X-12-51.
GAGNON, A. S.; BUSH, A. B. G.; SMOYER-TOMIC K. E. Dengue epidemics and the El Niño Southern Oscillation. Climate Research, v. 19, p. 35-43, 2001. Disponível em: https://www.jstor.org/stable/24866766. Acesso em: 29 mar. 2020.
GHARBI, M.; QUENEL, P.; GUSTAVE, J.; CASSADOU, S.; RUCHE, G.; GIRDARY, L. et al. Time series analysis of dengue incidence in Guadeloupe, French West Indies: Forecasting models using climate variables as predictors. BMC Infectious Diseases, v. 11, n. 1, p. 1-13, 2011. DOI: https://doi.org/10.1186%2F1471-2334-11-166. Acesso em: 02 mar. 2020.
GIBSON, G.; SANTOS, R. S.; PEDRO, A. S.; HONÓRIO, N. A.; CARVALHO, M. S. Occurrence of severe dengue in Rio de Janeiro: an ecological study. Revista da Sociedade Brasileira de Medicina Tropical, v. 47, n. 6, p. 684-691, 2014. DOI: https://doi.org/10.1590/0037-8682-0223-2014.
GROSSI-SOYSTER, E. N.; COOK, E. A. J.; GLANVILLE, W. A.; THOMAS, L. F.; KRYSTOSIK, A. R.; LEE, J. et al. Serological and spatial analysis of alphavirus and flavivirus prevalence and risk factors in a rural Community in western Kenya. PLoS neglected tropical diseases, v. 11, n. 10, p. 1-16, 2017. DOI: https://doi.org/10.1371/journal.pntd.0005998.
HALES, S.; MAINDONALD, J. W. N.; WOODWARD, A. Potential effect of population and climate changes on global distribution of dengue fever: an empirical model. The Lancet, v. 360, p. 830-834, 2002. Acesso em: 02 mar. 2018. DOI: https://doi.org/10.1016/s0140-6736(02)09964-6.
HU, W.; CLEMENTS, A.; WILLIAMS, G.; TONG, S.; MENGERSEN, K. Spatial Patterns and Socioecological Drivers of Dengue Fever Transmission in Queensland, Australia. Environmental Health Perspectives, v. 120, n. 2, p. 260-266, 2011. DOI: https://doi.org/10.1289%2Fehp.1003270.
Hurtado-Díaz, M.; Riojas-Rodríguez, H.; Rothenberg, S. J.; Gomez-Dantés, H.; Cifuentes, E. Short communication: Impact of climate variability on the incidence of dengue in Mexico. Tropical Medicine & International Health, v. 12, n. 11, p. 1327-1337, 2007. DOI: https://doi.org/10.1111/j.1365-3156.2007.01930.x.
KIKUTI, M.; CUNHA, G. M.; PAPLOSKI, I. A. D.; KASPER, A. M.; SILVA, M. M. O.; TAVARES, A. S. et al. Spatial Distribution of Dengue in a Brazilian Urban Slum Setting: Role of Socioeconomic Gradient in Disease Risk. PLOS Neglected Tropical Diseases, v. 9, n. 7,p. 1-18, 2015. DOI: https://doi.org/10.1371/journal.pntd.0003937.
KUCHARZ, E. J.; CEBULA-BYRSKA I. Chikungunya fever. European Journal of Internal Medicine, v. 23, n. 4, p. 325-329, 2012. DOI: https://doi.org/10.1016/j.ejim.2012.01.009.
LAZCANO, J. A. B.; MARQUETTI, M. C.; PORTILLO, R.; RODRÍGUEZ, M. M.; SUÁREZ, S.; LEYVA, M. Factores ecológicos asociados con la presencia de larvas de Aedes aegypti en zonas de alta infestación del municipio Playa, Ciudad de La Habana, Cuba. Revista Panamericana de Salud Pública, v. 19, n. 6, p. 379-384, 2006. Disponível em: https://www.scielosp.org/pdf/rpsp/2006.v19n6/379-384/es. Acesso em: 29 mar. 2020.
LEPARC-GOFFART, I.; NOUGAIREDE, A.; CASSADOU, S.; PRAT, C.; LAMBALLERIE, X. Chikungunya in the Americas. The Lancet, v. 383, p. 514, 2014. DOI: https://doi.org/10.1016/S0140-6736(14)60185-9.
LIPPI, C. A.; STEWART-IBARRA, A. M.; MUÑOZ, Á. G.; BORBOR-CORDOVA, M. J.; MEJÍA, R.; RIVERO, K. et al. The Social and Spatial Ecology of Dengue Presence and Burden during an Outbreak in Guayaquil, Ecuador, 2012.
International journal of environmental research and public health, v. 15, n. 4, p. 1-15, 2018. DOI: https://doi.org/10.3390/ijerph15040827.
LOPES, N.; NOZAWA, C. A.; LINHARES, R. E. C. Características gerais e epidemiologia dos arbovírus emergentes no Brasil. Revista Pan-Amazônica de Saúde, v. 5, n. 3, p. 55-64, 2014. DOI: http://dx.doi.org/10.5123/s2176-62232014000300007.
LUCEY, D. R.; GOSTIN, L. O. The emerging zika pandemic: enhancing preparedness.
JAMA, v. 315, n. 9, p. 865-866, 2016. DOI: https://doi.org/10.1001/jama.2016.0904.
MACHADO, J. P.; OLIVEIRA, R. M.; SANTOS, R. S. Análise espacial da ocorrência de dengue e condições de vida na cidade de Nova Iguaçu, Estado do Rio de Janeiro, Brasil. Cadernos de Saúde Pública, v. 25, n. 5, p. 1025-1034, 2009. DOI: https://doi.org/10.1590/S0102-311X2009000500009.
MACCORMACK-GELLES, B.; NETO, A. S. L.; SOUSA, G. S.; NASCIMENTO, O. J.; MACHADO, M. M. T.; WILSON, M. T. et al. Epidemiological characteristics and determinants of dengue transmission during epidemic and non-epidemic years in Fortaleza, Brazil: 2011-2015. PLOS Neglected Tropical Diseases, v. 12, n. 12, p. 1-30, 2018. DOI: https://doi.org/10.1371/journal.pntd.0006990.
MENA, N.; TROYO, A.; BONILLA-CARRIÓN, R.; CALDERÓN-ARGUEDAS, O. Factores asociados con la incidencia de dengue en Costa Rica. Revista Panamericana de Salud Pública, v. 29, n. 4, p. 234-242, 2011. Disponível em: https://www.scielosp.org/pdf/rpsp/2011.v29n4/234-242/es. Acesso em: 29 mar. 2020.
MOHER, D.; SHAMSEER, L.; CLARKE, M.; GHERSI, D.; LIBERATI, A.; PETTICREW, M.; SHEKELLE, P.; STEWART, L. A. Preferred Reporting Items for Systematic Review and Meta-Analysis Protocols (PRISMA-P) 2015 statement. Systematic reviews, v. 4, n. 1, p. 1-9, 2015. DOI: https://doi.org/10.1186%2F2046-4053-4-1.
OCAMPO, C. B.; MINA, N. J.; ECHAVARRIA, M. I.; ACUÑA, M.; CABALLERO, A.; NAVARRO, A. et al. VECTOS: an integrated system for monitoring risk factors associated with urban arbovirus transmission. Global Health: Science and Practice, v. 7, n. 1, p. 128-137, 2019. DOI: https://doi.org/10.9745/GHSP-D-18-00300.
ONG, J.; LIU, X.; RAJARETHINAM, J.; YAP, G.; HO, D.; NG, L. et al. A novel entomological index, Aedes aegypti Breeding Percentage, reveals the geographical spread of the dengue vector in Singapore and serves as a spatial risk indicator for dengue. Parasites & Vectors, v. 12, n. 1, p. 1-10, 2019. DOI: https://doi.org/10.1186/s13071-018-3281-y.
PETERS, M. D. J. et al. The Joanna Briggs Institute reviewers' manual 2015: methodology for JBI scoping reviews. Adelaide: The Joanna Briggs Institute. Disponível em: http://joannabriggs.org/assets/docs/sumari/Reviewers-Manual_Methodology-for-JBI-Scoping-Reviews_2015_v2.pdf. Acesso em: 31 jul. 2020.
PINTO, E.; COELHO, M.; OLIVER, L.; MASSAD, E. The influence of climate variables on dengue in Singapore. International Journal of Environmental Health Research, v. 21, n. 6, p. 415-426, 2011. DOI: https://doi.org/10.1080/09603123.2011.572279.
PHAM, H. U.; DOAN, H. T. M.; PHAN, T. T. T.; MINH, N. N. T. Ecological factors associated with dengue fever in a central highlands Province, Vietnam. BMC Infectious Diseases, v. 11, n. 1, p. 1-6, 2011. DOI: https://doi.org/10.1186/1471-2334-11-172.
QUEIROGA, R. P. F.; SÁ, L. D.; NOGUEIRA, J. A.; LIMA, E. R. V.; SILVA, A. C. O.; PINHEIRO, P. G. O. D. et al. Distribuição espacial da tuberculose e a relação com condições de vida na área urbana do município de Campina Grande - 2004 a 2007. Revista brasileira de epidemiologia, v. 15, n. 1, p. 222-232, 2012. DOI: https://doi.org/10.1590/S1415-790X2012000100020.
RAUDE, J.; SETBON, M. The role of environmental and individual factors in the social epidemiology of chikungunya disease on Mayotte Island. Health & Place, v. 15, n. 3, p. 689-699, 2009. DOI: https://doi.org/10.1016/j.healthplace.2008.10.009.
REES, E. E.; PETUKHOVA, T.; MASCARENHAS, M.; PELCAT, Y.; OGDEN, N. H. Environmental and social determinants of population vulnerability to Zika virus emergence at the local scale. Parasites & Vectors, v. 11, n. 1, p.1-13, 2018. DOI: https://doi.org/10.1186/s13071-018-2867-8.
RODRIGUES, N. C. P.; LINO, V. T. S.; DAUMAS, R. P.; ANDRADE, M. K. N.; O’DWYER, G.; MONTEIRO, D. L. M. et al. Temporal and Spatial Evolution of Dengue Incidence in Brazil, 2001-2012. PLoS One, v. 11, n. 11, p. 1-12, 2016. DOI: https://doi.org/10.1371/journal.pone.0165945.
RODRIGUES, N. C. P.; DUMAS, R. P.; ALMEIDA, A. S.; SANTOS, R. S.; KOSTER, I.; RODRIGUES, P. P. et al. Risk factors for arbovirus infections in a low-income community of Rio de Janeiro, Brazil, 2015-2016. PLoS One, v. 13, n. 6, p. 1-15, 2018. DOI: https://doi.org/10.1371/journal.pone.0198357.
SOUZA, A. I.; SIQUEIRA, M. T.; FERREIRA, A. L. C. G.; FREITAS, C. U.; BEZERRA, A. C. V.; RIBEIRO, A. G. et al. Geography of Microcephaly in the Zika Era: A Study of Newborn Distribution and Socio-environmental Indicators in Recife, Brazil, 2015-2016. Public Health Reports, v. 133, n. 4, p. 461-471, 2018. DOI: https://doi.org/10.1177/0033354918777256.
TOLEDO, C. A. M.; BENDATI M. M.; CODEÇO, C. T.; TEIXEIRA, M. M. Probability of dengue transmission and propagation in a non-endemic temperate area: conceptual model and decision risk levels for early alert, prevention and control. Parasites & Vectors, v. 12, n. 1, p. 1-15, 2019. DOI: https://doi.org/10.1186/s13071-018-3280-z.
TEURLAI, M.; MENKÈS, C. E.; CAVARERO, V.; DEGALLIER, N.; DESCLOUX, E.; GRANGEON, J. et al. Socio-economic and Climate Factors Associated with Dengue Fever Spatial Heterogeneity: A Worked Example in New Caledonia. PLOS Neglected Tropical Diseases, v. 9, n. 12, p. 1-31, 2015. DOI: https://doi.org/10.1371/journal.pntd.0004211.
TIPAYAMONGKHOLGUL, M.; LISAKULRUK, S. Socio-geographical factors in vulnerability to dengue in Thai villages: a spatial regression analysis. Geospatial health, v. 5, n. 2, p. 191-198, 2011. DOI: https://doi.org/10.4081/gh.2011.171.
VIANA, D. V.; IGNOTTI, E. The ocurrence of dengue and weather changes in Brazil: A systematic review. Revista brasileira de epidemiologia, v. 16, n. 2, p. 240-256, 2013. DOI: https://doi.org/10.1590/s1415-790x2013000200002.
VIONETTE, A. J.; DANSA-PETRETSKI, M. Advanced Topics in Molecular Entomology - Pathogen-Vector Interaction: Dengue. 1st ed. Brasília: National Institute of Science and Technology in Molecular Entomology - INCT-EM; 2012.
VOORHAM, J. M. S.; TAMI, A.; JULIANA, A. E.; RODENHUIS-ZYBERT, I. A.; WILSCHUT, J. C.; SMIT, J. M. Dengue: a growing risk to travellers to tropical and sub-tropical regions. Nederlands tijdschrift voor geneeskunde, v. 153: p. 1-8, 2009. Disponível em: https://www.researchgate.net/publication/40756322_Dengue_a_growing_risk_to_travellers_to_tropical_and_sub-tropical_regions. Acesso em: 31 jul. 2020.
WANGDI, K.; CLEMENTS, A. C. A.; DU, T.; NERY, S. Spatial and temporal patters of dengue infections in Timor-Leste, 2005-2013. Parasites & Vectors, v. 11, n. 1, p. 1-9, 2018. DOI: https://doi.org/10.1186/s13071-017-2588-4.
YU, H. L.; YANG, S. J.; YEN, H. J.; Christakos, G. A spatio-temporal climate-based model of early dengue fever warning in southern Taiwan. Stochastic Environmental Research and Risk Assessment, v. 25, n. 4, p. 485-494, 2010. DOI: https://doi.org/10.1007/s00477-010-0417-9.
YUE, Y.; SUN, J.; LIU, X.; REN, D.; LIU, Q.; XIAO, X. et al. Spatial analysis of dengue fever and exploration of its environmental and socio-economic risk factors using ordinary least squares: A case study in five districts of Guangzhou City, China, 2014. International Journal of Infectious Diseases, v. 75, p. 39-48, 2018. DOI: https://doi.org/10.1016/j.ijid.2018.07.023.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2023 Gabriela Elisa Parra, Ana Cristina Ribeiro, Sílvia Carla da Silva André Uehara
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.