Immunosensor for bovine anaplasmosis diagnosis on graphite platform functionalized with poly (3-hydroxybenzoic acid)
DOI:
https://doi.org/10.18554/rbcti.v8i1.6505Palabras clave:
poly-(3-hydroxybenzoic acid), Anaplasma marginale, immunosensor, transducer functionalizationResumen
This study describe the development of an electrochemical immunosensor with a transducer platform functionalized with the poly-(3- hydroxybenzoic acid), to detection of antibodies against the surface protein (Am1) of Anaplasma marginale. This biological probe was immobilized on the polymer under graphite and characterized electrochemically. The detections of antigen-antibody interactions were conducted using the signal obtained from the oxidation of 4-aminoantipyrine (4 -AAP), interleaved with Am1, to enable the use of voltammetry technique of differential pulse. The detections of antibodies of A. marginale, using the graphite electrode functionalized with the probe Am1 was 66% higher than the graphite electrode not functionalized. The time of storage of the immunosensor was satisfactory, with reduced peak current by 35%, after 90 days. The results demonstrate the excellent applicability of this new functionalized platform for probe immobilization and diagnosis of anaplasmosis without the interference of the most similar bovine diseases
Citas
ABDULBARI, H. A.; BASHEER, E. A. M. Electrochemical Biosensors: Electrode Development, Materials, Design, and Fabrication. ChemBioEng Reviews, v. 4, n. 2, p. 92–105, 2017. DOI: https://doi.org/10.1002/cben.201600009
ARDUINI, F. et al. How cutting-edge technologies impact the design of electrochemical (bio)sensors for environmental analysis. A review. Analytica Chimica Acta, 2017. DOI: https://doi.org/10.1016/j.aca.2016.12.035
AYDEMIR, N. et al. New immobilisation method for oligonucleotides on electrodes enables highly-sensitive, electrochemical label-free gene sensing. Biosensors and Bioelectronics, v. 97, p. 128–135, 2017. DOI: https://doi.org/10.1016/j.bios.2017.05.049
BAHADIR, E. B.; SEZGINTÜRK, M. K. Applications of electrochemical immunosensors for early clinical diagnostics. Talanta, 2015. DOI: https://doi.org/10.1016/j.talanta.2014.08.063
BLAIR, E. O.; CORRIGAN, D. K. A review of microfabricated electrochemical biosensors for DNA detection. Biosensors and Bioelectronics, 2019. DOI: https://doi.org/10.1016/j.bios.2019.03.055
BRAHIM, S.; NARINESINGH, D.; GUISEPPI-ELIE, A. Polypyrrole-hydrogel composites for the construction of clinically important biosensors. Biosensors and Bioelectronics. 2002; 17:53-59.
DOI: https://doi.org/10.1016/S0956-5663(01)00262-7
CAMPOS-FERREIRA, D. S. et al. Electrochemical DNA biosensor for human papillomavirus 16 detection in real samples. Analytica Chimica Acta, v. 804, p. 258–263, 2013. DOI: https://doi.org/10.1016/j.aca.2013.10.038
CARELLI, G. et al. Detection and quantification of Anaplasma marginale DNA in blood samples of cattle by real-time PCR. Veterinary Microbiology, v. 124, n. 1–2, p. 107–114, 2007. DOI: https://doi.org/10.1016/j.vetmic.2007.03.022
COETZEE, J. F. et al. Comparison of the complement fixation test and competitive ELISA for serodiagnosis of Anaplasma marginale infection in experimentally infected steers. American Journal of Veterinary Research, v. 68, n. 8, p. 872–878, 2007. DOI: https://doi.org/10.2460/ajvr.68.8.872
CORTINA, M. E. et al. Biosensors and Bioelectronics Electrochemical magnetic microbeads-based biosensor for point-of- care serodiagnosis of infectious diseases. Biosensors and Bioelectronic, v. 80, p. 24–33, 2016. DOI: https://doi.org/10.1016/j.bios.2016.01.021
COSNIER, S. Biomolecule immobilization on electrode surfaces by entrapment or attachment to electrochemically polymerized films. A review. Biosensors and Bioelectronics, v. 14, n. 5, p. 443–456, maio 1999. DOI: https://doi.org/10.1016/S0956-5663(99)00024-X
DE SOUZA RAMOS, I. A. et al. Genetic diversity of Anaplasma marginale in beef cattle in the Brazilian Pantanal. Ticks and Tick-borne Diseases, v. 10, n. 4, p. 805–814, 2019. DOI: https://doi.org/10.1016/j.ttbdis.2019.03.015
ENACHE, T. A.; OLIVEIRA-BRETT, A. M. Peptide methionine sulfoxide reductase A (MsrA): Direct electrochemical oxidation on carbon electrodes. Bioelectrochemistry, v. 89, p. 11–18, 2013. DOI: https://doi.org/10.1016/j.bioelechem.2012.08.004
ESTEVES, E. et al. Propagation of a Brazilian isolate of Anaplasma marginale with appendage in a tick cell line (BME26) derived from Rhipicephalus (Boophilus) microplus. Veterinary Parasitology, v. 161, n. 1–2, p. 150–153, 2009. DOI: https://doi.org/10.1016/j.vetpar.2008.12.006
FERREIRA, D. C. et al. Graphite Electrodes Modified with poly ( 3-hydroxybenzoic acid ) for Oligonucleotides Sensors. International Journal of Electrochemical Science, v. 9, p. 6246–6257, 2014. DOI: https://doi.org/10.1016/S1452-3981(23)10885-6
FOSGATE, G. T. et al. Diagnostic accuracy of methods for detecting anaplasma marginale infection in lactating dairy cattle of puerto rico. Journal of Veterinary Diagnostic Investigation, v. 22, p. 192–199, 2010. DOI: https://doi.org/10.1177/104063871002200204
GU, X. et al. Engineering a novel self-powering electrochemical biosensor. Systems and Synthetic Biology, v. 4, p. 203–214, 2010. DOI: https://doi.org/10.1007/s11693-010-9063-2
HUANG, Y. et al. Disease-Related Detection with Electrochemical Biosensors: A Review. Sensors, v. 17, n. 10, p. 2375, 2017. DOI: https://doi.org/10.3390/s17102375
KIM, J. et al. Wearable biosensors for healthcare monitoring. Nature Biotechnology, v. 37, n. 4, p. 389–406, 2019. DOI: https://doi.org/10.1038/s41587-019-0045-y
KUCHERENKO, I. S. et al. A novel conductometric biosensor based on hexokinase for determination of adenosine triphosphate. Talanta, v. 150, p. 469-475, 2016. DOI: https://doi.org/10.1016/j.talanta.2015.12.069
LABIB, M.; SARGENT, E. H.; KELLEY, S. O. Electrochemical Methods for the Analysis of Clinically Relevant Biomolecules. Chemical Reviews, 2016. DOI: https://doi.org/10.1021/acs.chemrev.6b00220
LOPEZ, A. D. et al. Global and regional burden of disease and risk factors , 2001?: systematic analysis of population health data. p. 1747-1757, 2001. DOI: https://doi.org/10.1016/S0140-6736(06)68770-9
MADURAIVEERAN, G.; JIN, W. Nanomaterials based electrochemical sensor and biosensor platforms for environmental applications. Trends in Environmental Analytical Chemistry, 2017. DOI: https://doi.org/10.1016/j.teac.2017.02.001
NIAMH, A. M.; RYONA SAYERS, C.; ALAN O’RIORDAN, S. B. Novel Single Gold Nanowire-based Electrochemical Immunosensor for Rapid Detection of Bovine Viral Diarrhoea Antibodies in Serum. Journal of Biosensors & Bioelectronics, v. 06, n. 03, p. 174, 2015. DOI: https://doi.org/10.4172/2155-6210.1000174
OKAFOR, C. C. et al. Seroprevalence of bovine Anaplasmosis in Georgia. Veterinary Parasitology: Regional Studies and Reports, v. 15, n. September 2018, p. 100258, 2019. DOI: https://doi.org/10.1016/j.vprsr.2018.100258
PALLELA, R. et al. Biosensors and Bioelectronics An amperometric nanobiosensor using a biocompatible conjugate for early detection of metastatic cancer cells in biological fl uid. Biosensors and Bioelectronic, v. 85, p. 883–890, 2016. DOI: https://doi.org/10.1016/j.bios.2016.05.092
PALMER, G. H. et al. Characterization of a neutralization-sensitive epitope on the Am 105 surface protein of Anaplasma marginale. International Journal for Parasitology, v. 17, n. 7, p. 1279-1285, 1987. DOI: https://doi.org/10.1016/0020-7519(87)90093-2
REDDY, A. S. G. et al. Gravure printed electrochemical biosensor. Procedia Engineering. Anais...2011. DOI: https://doi.org/10.1016/j.proeng.2011.12.235
ROGERS, J. K.; TAYLOR, N. D.; CHURCH, G. M. Biosensor-based engineering of biosynthetic pathways. Current Opinion in Biotechnology, v. 42, p. 84–91, 2016. DOI: https://doi.org/10.1016/j.copbio.2016.03.005
RONKAINEN, N. J.; HALSALL, H. B.; HEINEMAN, W. R. Electrochemical biosensors. Chemical Society Reviews, v. 39, n. 5, p. 1747, 2010. DOI: https://doi.org/10.1039/b714449k
ROTARIU, L. et al. Trends in Analytical Chemistry Electrochemical biosensors for fast detection of food contaminants – trends and perspective. Trends in Analytical Chemistry, v. 79, p. 80–87, 2016. DOI: https://doi.org/10.1021/acssensors.3c00564
SANI, N. D. M. et al. Electrochemical DNA biosensor for potential carcinogen detection in food sample. Food Chemistry, v. 269, n. July, p. 503–510, 2018. DOI: https://doi.org/10.1016/j.foodchem.2018.07.035
SCHUNTNER, C. A.; LEATCH, G. Radioimmunoassay for Anaplasma marginale antibodies in cattle. American journal of veterinary research, 1988. DOI: https://doi.org/10.1016/S0020-7519(96)80009-9
SGOBBI, L. F.; MACHADO, S. A. S. Functionalized polyacrylamide as an acetylcholinesterase-inspired biomimetic device for electrochemical sensing of organophosphorus pesticides. Biosensors and Bioelectronics, v. 100, p. 290–297, 2018. DOI: https://doi.org/10.1016/j.bios.2017.09.019
SHETTI, N. P. et al. Nanostructured titanium oxide hybrids-based electrochemical biosensors for healthcare applications. Colloids and Surfaces B: Biointerfaces, v. 178, n. December 2018, p. 385–394, 2019. DOI: https://doi.org/10.1016/j.colsurfb.2019.03.013
SILVEIRA, J. A. G. et al. Isolation and attempted cultivation of an Anaplasma marginale strain from Brazilian brown brocket deer (Mazama gouazoubira, Fisher, 1814) in the tick cell line IDE8. Ticks and Tick-borne Diseases, v. 7, p. 1102–1108, 2016. DOI: https://doi.org/10.1016/j.ttbdis.2016.09.001
SINGH, H. et al. Molecular detection of Anaplasma marginale infection in carrier cattle. Ticks and Tick-borne Diseases, v. 3, n. 1, p. 55–58, fev. 2012. DOI: https://doi.org/10.1016/j.ttbdis.2011.10.002
TALEAT, Z.; KHOSHROO, A. Screen-printed electrodes for biosensing: a review (2008 – 2013). p. 865–891, 2014. DOI: https://doi.org/10.1021/acssensors.3c00564
TANG, D. et al. Multiplexed electrochemical immunoassay of biomarkers using metal sulfide quantum dot nanolabels and trifunctionalized magnetic beads. Biosensors and Bioelectronics, v. 46, p. 37–43, 2013. DOI: https://doi.org/10.1016/j.bios.2013.02.027
TARASOV, A. et al. A potentiometric biosensor for rapid on-site disease diagnostics. Biosensors and Bioelectronics, v. 79, p. 669-678, 2016. DOI: https://doi.org/10.1016/j.bios.2015.12.086
TATSUMA T, GANDAIRA M, WATANABE T. Peroxidase-incorporated Polypirrole membrane electrodes. Anal. Chem., v. 64, p. 1183-1187, 1992. DOI: https://doi.org/10.1016/0731-7085(88)80083-9
TIWARI, J. N. et al. Engineered Carbon-Nanomaterial-Based Electrochemical Sensors for Biomolecules. ACS Nano, v. 10, n. 1, p. 46-80, 2016. DOI: https://doi.org/10.1021/acsnano.5b05690
VARMIRA, K. et al. Fabrication of a novel enzymatic electrochemical biosensor for determination of tyrosine in some food samples. Talanta, v. 183, p. 1-10, 2018. DOI: https://doi.org/10.1016/j.talanta.2018.02.053
VIDOTTO, O.; MARANA, E. R. M. DIAGNÓSTICO EM ANAPLASMOSE BOVINA. Ciência Rural, v. 31, n. 2, p. 361-368, 2014. DOI: https://doi.org/10.1016/j.bios.2014.05.043
WANG, Z. et al. An ionic liquid-modified graphene based molecular imprinting electrochemical sensor for sensitive detection of bovine hemoglobin. Biosensors and Bioelectronics, v. 61, p. 391–396, 2014. DOI: https://doi.org/10.1016/j.bios.2014.05.043
WU, L. et al. An electrochemical immunosensor for detecting progesterone in milk from dairy cows. v. 88, n. 1, p. 49–57, 2018. DOI: https://doi.org/10.24099/vet.arhiv.160823a
YING, G. Q. et al. Construction and application of an electrochemical biosensor based on an endotoxin aptamer. Biotechnology and Applied Biochemistry, v. 65, n. 3, p. 323-327, 2018.
DOI:https://doi.org/10.1002/bab.1610
ZAKIAN, A. et al. Evaluation of a point-of-care electrochemical meter to detect subclinical ketosis and hypoglycaemia in lactating dairy cows. Australian Veterinary Journal, v. 95, n. 4, p. 123–128, 2017. DOI: https://doi.org/10.1111/avj.12568
Descargas
Publicado
Cómo citar
Número
Sección
Licencia
Derechos de autor 2023 Deusmaque Carneiro Ferreira, Odonírio Abrahão Júnior, Robson Tadeu Soares de Oliveira Júnior, Paula de Souza Santos, Ana Graci Brito Madurro, João Marcos Madurro
Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-CompartirIgual 4.0.