CALCIUM AND MAGNESIUM SILICATE AND SOIL AS ENVIRONMENTAL STABILIZERS IN THE CULTIVATION OF NILE TILAPIA LARVAE IN THE RECIRCULATION SYSTEM

Authors

  • Menezes WF Laboratório de Aquicultura e Ecologia Aquática, Departamento de Zootecnia. Universidade Federal dos Vales do Jequitinhonha e Mucuri
  • de Souza ER Laboratório de Aquicultura e Ecologia Aquática, Departamento de Zootecnia. Universidade Federal dos Vales do Jequitinhonha e Mucuri
  • Pedreira RSF Laboratório de Aquicultura e Ecologia Aquática, Departamento de Zootecnia. Universidade Federal dos Vales do Jequitinhonha e Mucuri
  • Amorim MPS Laboratório de Aquicultura e Ecologia Aquática, Departamento de Zootecnia. Universidade Federal dos Vales do Jequitinhonha e Mucuri
  • Silva RC Laboratório de Aquicultura e Ecologia Aquática, Departamento de Zootecnia. Universidade Federal dos Vales do Jequitinhonha e Mucuri
  • Pelli A Departamento de Ciências Biológicas, Universidade Federal do Triângulo Mineiro. Rua Frei Paulino, 30, Uberaba, MG. https://orcid.org/0000-0001-8279-2221
  • Marcelo Mattos Pedreira Unversidade Federal dos Vales do Jequitinhonha e Mucuri - UFVJM https://orcid.org/0000-0002-8676-2254

DOI:

https://doi.org/10.18554/acbiobras.v7i2.7994

Keywords:

Alkalinity, Hardness, Liming, pH, Water homeostasis.

Abstract

With the intensification of production systems and the need to reduce water use, there is a greater likelihood of sudden changes in water quality, leading to fish mortality. Therefore, it is necessary to develop techniques that increase environmental homeostasis. This experiment evaluated the influence of calcium-magnesium silicate and soil compared to calcium carbonate and calcium-magnesium carbonate, traditional alkalizers, as environmental stabilizers in cultivating Nile tilapia larvae in a recirculating system. The experiment was composed of five treatments: Control) aquarium containing only water; Soil) water and soil; Calcitic) water and calcium carbonate (CaCO3); Dolomite) water and dolomitic limestone (CaCO3 MgCO3) and Silicate) water and calcium-magnesium silicate (CaSiO3 MgSiO3). After 30 days, the performance parameters, weight, standard length, total length, Fulton condition factor, weight gain, biomass, biomass gain, and survival, did not differ among treatments. Among the water quality parameters, temperature (30 °C) and oxygen (5 to 6 mg L-1) were maintained with heaters and aeration throughout the period. The parameters conductivity, pH, redox potential, salinity, turbidity, ammonia, nitrite, nitrate, alkalinity, hardness, calcium, magnesium, and silica were measured. The pH was higher in the silicate and calcitic treatments than in the control. The dolomitic treatment was higher for the redox potential than in the soil. The electrical conductivity was higher in the soil treatment than in the control. The turbidity in the soil was higher than in the other treatments. Salinity was higher in treatments that received liming products but with low values. Ammonia concentration was higher in the control treatment than in the silicate. Nitrite and nitrate concentrations did not differ between treatments. Alkalinity was higher in the silicate treatment. Hardness was higher in the calcitic, dolomitic, and silicate treatments than in control and soil. Calcium dissolved in water was higher in the calcitic and silicate treatments than in the control and soil. Silica dissolved in water was higher in silicate. Calcium-magnesium silicate is a viable and recommended alternative for liming, as it presents results equivalent to calcitic and dolomitic limestone, traditional salts for this practice, which confirms its importance in maintaining water quality and fish performance. Although the soil has a buffering capacity in the water, it is less effective than other products and deserves further study.

References

Verdegem M, Buschmann AH, Latt UW, Dalsgaard AJ, Lovatelli A. The contribution of aquaculture systems to global aquaculture production. Journal of the World Aquaculture Society. 2023; 54(2): 206-250. https://doi.org/10.1111/jwas.12963.

Laktuka K, Kalnbalkite A, Sniega L, Logins K, Lauka D. Towards the sustainable intensification of aquaculture: Exploring possible ways forward. Sustainability. 2023; 15(24): 16952. https://doi.org/10.3390/su152416952.

Jafari L, Montjouridès MA, Hosfeld CD, Attramadal K, Fivelstad S, Dahle H. Biofilter and degasser performance at different alkalinity levels in a brackish water pilot scale recirculating aquaculture system (RAS) for post-smolt Atlantic salmon. Aquacultural Engineering. 2024; 106: 102407. https://doi.org/10.1016/j.aquaeng.2024.102407.

Boyd, CE, Tucker, CS, Somridhivej, B Alkalinity and hardness: critical but elusive concepts in aquaculture. Journal of the World Aquaculture Society, 2016; 47(1): 6-41. https://doi.org/10.1111/jwas.12241.

Pedreira MM Calagem na manutenção da qualidade da água na aquicultura. In: Membrive CMB, Bernardes EM, Rosas FS, Fonseca R (eds) IMAST 2023: IV International Meeting of Agrarian Science and Technology. FCAT, Dracena; Ladri Marília, SP: UNESP; 2023. cap. 10, p. 154–171. https://www.dracena.unesp.br/Home/Servicos/Biblioteca/livrosfcat/livrodig_imast_2023.pdf.

Boyd CE, Tucker CS. Handbook for aquaculture water quality. Handbook for Aquaculture Water Quality, 2014; 439p.

Boyd CE Tucker CS Pond aquaculture water quality management. New York: Springer Science & Business Media; 2012. 700p.

de Souza ER, Ferreira TA, Pelli A, Moreira NF, Verardo LL, Pedreira MM. Alkalizing potentials for recirculating systems with clear water in the Rhamdia quelen juvenile cultivation. Aquaculture International. 2024; 1-17. https://doi.org/10.1007/s10499-024-01573-6.

Martins GB, Tarouco F, Rosa CE, Robaldo RB The utilization of sodium bicarbonate, calcium car bonate or hydroxide in biofloc system: water quality, growth performance and oxidative stress of Nile tilapia (Oreochromis niloticus). Aquaculture. 2017; 468: 10–17. https://doi.org/10.1016/j.aquaculture.2016.09. 046.

Boyd, CE. The importance of liming materials in aquaculture: Calcium carbonate, magnesium carbonate essential in management of production ponds. Global Seafood Advocate. 2016; Available at: (globalseafood.org), accessed at: 09 august 2024.

Avnimelech Y, Ritvo G. Shrimp and fish pond soils: processes and management. Aquaculture. 2003; 220(1-4): 549-567. https://doi.org/10.1016/S0044-8486(02)00641-5.

Dong SL, Li L. Sediment and remediation of aquaculture ponds. In: Dong SL, Tian XL, Gao QF, Dong YW. (eds) Aquaculture Ecology. Singapore: Springer; 2023. https://doi.org/10.1007/978-981-19-5486-3_8.

APHA - American Public Health Association. Standard methods for the examination of water and wastewater. 22nd. Rice, E.W.; Baird, R.B.; Eaton, A.D.; Clesceri, L.S. Washington, D.C.: American Public Health Association, American Water Works Association, Water Environment Federation. 2012. 1496p.

Silva, ED, Pedreira, MM., Dias, M.F, Tessitore ADA, Ferreira TA. Larvae of Nile tilapia lines subject to feeding frequencies under low temperature. Revista Brasileira de Saúde e Produção Animal. 2017; 18(1):193-203. https://doi.org/10.1590/S1519-99402017000100018.

Li J, Liua G, Li C, Deng Y, Tadda MA, Lan L, Zhu S, Liu D. Effects of different solid carbon sources on water quality, biofloc quality and gut microbiota of Nile tilapia (Oreochromis niloticus) larvae. Aquaculture. 2018; 495: 919-931. https://doi.org/10.1016/j.aquaculture.2018.06.078

Ali A, Moustafa YT, El-Said S. Evaluating the influence of different water sources on water quality, survival and growth rates of Nile tilapia (Oreochomis niloticus) larvae in tilapia hatcheries. Egyptian Journal for Aquaculture. 2020; 10(1): 45-64. https://doi.org/10.21608/eja.2020.25601.1018.

Martins GB, da Rosa CE, Tarouco FDM, Robaldo RB. Growth, water quality and oxidative stress of Nile tilapia Oreochromis niloticus (L.) in biofloc technology system at different pH. Aquaculture Research. 2019; 50(4): 1030-1039. https://doi.org/10.1111/are.13975.

Susitharan V, Krishnan S, Kumar P, Sukhdhane K, Kala AS, Rani AB. Mineral supplementation in biofloc influences growth and haemato-biochemical indices of Genetically Improved Farmed Tilapia reared in inland saline ground water. Aquacultural Engineering. 2024; 104. 102386. https://doi.org/10.1016/j.aquaeng.2023.102386.

Akhter F, Siddiquei HR, Alahi MEE, Mukhopadhyay SC. Recent advancement of the sensors for monitoring the water quality parameters in smart fisheries farming. Computers. 2021; 10(3): 26. https://doi.org/10.3390/computers10030026.

Leonard JN, Skov PV. Capacity for thermal adaptation in Nile tilapia (Oreochromis niloticus): Effects on oxygen uptake and ventilation. Journal of Thermal Biology. 2022; 105: 103206. https://doi.org/10.1016/j.jtherbio.2022.103206.

Hamed SA, Abou?Elnaga A, Salah AS, Abdel?Hay AHM, Zayed MM, Soliman T, Mohamed RA. Effect of water temperature, feeding frequency, and protein percent in the diet on water quality, growth and behavior of Nile tilapia Oreochromis niloticus (Linnaeus, 1758). Journal of Applied Ichthyology. 2021; 37(3): 462-473. https://doi.org/10.1111/jai.14193.

Zeng NN, Jiang M, Wen H, Liu W, Wu F, Tian J, ... Guo ZB Effects of water temperatures and dietary protein levels on growth, body composition and blood biochemistry of juvenile GIFT tilapia (Oreochromis niloticus). Aquaculture Nutrition. 2021; 27(1): 240-251. https://doi.org/10.1111/anu.13181.

Santos VB, Mareco EA, Silva MDP. Growth curves of Nile tilapia (Oreochromis niloticus) strains cultivated at different temperatures. Acta Scientiarum. Animal Sciences. 2013; 35(3): 235–242.

Abdel-Tawwab M, Hagras AE, Elbaghdady, HAM, Monier MN. Effects of dissolved oxygen and fish size on Nile tilapia, Oreochromis niloticus (L.): growth performance, whole-body composition, and innate immunity. Aquaculture International. 2015; 23: 1261-1274. https://doi.org/10.1007/s10499-015-9882-y.

Khanjani MH, Sharifinia M. Production of Nile tilapia Oreochromis niloticus reared in a limited water exchange system: The effect of different light levels. Aquaculture. 2021; 542: 736912. https://doi.org/10.1016/j.aquaculture.2021.736912.

Mallya YJ The effects of dissolved oxygen on fish growth in aquaculture. Reykjavík, Ísland: Kingolwira National Fish Farm Center UNU-Fisheries Training Programme, 30 pp. 2007.

Magondu E W, Verdegem MCJ, Nyakeya K, Mokaya M. Production of aerobic, anaerobic and anoxic bioflocs from tilapia sludge. International Journal of Fisheries and Aquatic Studies. 2015; 2(5): 347-352.

Lehmann M, Vinatea L. Redox potential in freshwater and seawater culture ponds: determination methodology behavior. Boletim do Instituto de Pesca. 2008; 34: 131-140.

Boyd, CE. 3rd Water quality: an introduction. Cham: Springer Nature; 2020. 452 p. https://doi.org/10.1007/978-3-030-23335-8.

Birchenough S, Parker R, Mcmanus E, Barry J. Combining bioturbation and redox metrics: potential tools for assessing seabed function. Ecological Indicators. 2012; 12(1): 8–16. https://doi.org/10.1016/j.ecolind.2011.03.015.

Rojas NET, Rocha O. Influência da alcalinidade da água sobre o crescimento de larvas de tilápia do Nilo (Oreochromis niloticus Linnaeus, 1758 Perciformes, Cichlidae). Acta Scientiarum. Biological Sciences. 2004; 26(2): 163-167.

Cavalcante DH, Poliato AS, Ribeiro DC, Magalhães FB, Sá MVC. Effects of CaCO3 liming on water quality and growth performance of fingerlings of Nile tilapia, Oreochromis niloticus. Acta Scientiarum. Animal Sciences. 2009; 31: 327-333.

Moro GV, Torati LS, Luiz DDB, Matos FD Monitoramento e manejo da qualidade da água em pisciculturas. In: Rodrigues APO, Lim AF, Alves AL, Rosa DK, Torati LS, dos Santos VRV (eds) Piscicultura de água doce: multiplicando conhecimentos. Brasília – DF: Embrapa; 2013. pp.141–169. https://ainfo.cnptia.embrapa.br/digital/bitstream/doc/1083545/1/cap.5.pdf. Accessed 28 Ago 2024.

Boyd CE, Wood CW, Thunjai T. Aquaculture pond bottom soil quality management. Pond Soils. Oregon State University, Corvallis, Oregon, USA; 2002.

Ekassari J, Rivandi DR, Firdausi AP, Surawidjaja EH, Zairin JRM, Bossier P, de Schryver P. Biofloc technology positively affects Nile tilapia (Oreochromis niloticus) larvae performance. Aquaculture. 2015; 441: 72-77. https://doi.org/10.1016/j.aquaculture.2015.02.019.

Pedreira MM, Tessitore AJA, Pires AV, Silva MA, Schorer M. Substrates for biofilter in recirculating system in Nile tilapia larviculture production. Revista Brasileira de Saúde e Produção Animal. 2016; 17(3): 553-560. https://dx.doi.org/10.1590/S1519-99402016000300020.

El-Sherif MS, El-Feky AMI. Performance of Nile tilapia (Oreochromis niloticus) fingerlings. I. Effect of pH. International Journal of Agriculture and Biology, 2009; 11(3): 297-300.

Ueno-Fukura M, Corredor-Ruiz JS, Jiménez-Ojeda YK, Collazos-Lasso LF. Usage of alkalizers in the nursery culture of Piaractus brachypomus with Biofloc technology-BFT. Aquaculture, Aquarium, Conservation & Legislation. 2019; 12(4): 989-995.

Cavalcante DH, Silva SR, Pinheiro PD, Akao MMF, Sá MVC. Single or paired increase of total alkalinity and hardness of water for cultivation of Nile tilapia juveniles, Oreochromis niloticus. Acta Scientarium. Technology. 2012; 32(2): 177–183.

Cardoso Filho R, Campeche DF, Paulino RV. Tilápia em reservatório de água para irrigação e avaliação da qualidade da água. Revista Brasileira de Ciências Agrárias. 2010; 5(1): 117-122. https://doi.org/10.5039/agraria.v5i1a669.

Bart AN, Prasad B, Thakur DP. Effects of incubation water hardness and salinity on egg hatch and fry survival of Nile tilapia Oreochromis niloticus (Linnaeus). Aquaculture Research. 2012; 44(7): 1085–1092. doi:10.1111/j.1365-2109.2012.03113.x.

Baldisserotto B. Water pH and hardness affect growth of freshwater teleosts. Revista Brasileira de Zootecnia. 2011; 40(supl. especial): 138-144.

Parra JEG, Baldisserotto B. Effect of water pH and hardness on survival and growth of freshwater teleosts. In: Fish osmoregulation. Boca Raton, Florida: CRC Press; 2019. Cap. 3, p. 135-150.

Copatti CE, Baldisserotto B, Souza CDF, Monserrat JM, Garcia L. Water pH and hardness alter ATPases and oxidative stress in the gills and kidney of pacu (Piaractus mesopotamicus). Neotropical Ichthyology. 2019; 17(4): e190032. https://doi.org/10.1590/1982-0224-20190032.

Choi CY, Kim MJ, Song JA, Kho KH. Water hardness improves the antioxidant response of zinc-exposed goldfish (Carassius auratus). Biology. 2023; 12(2): 289. https://doi.org/10.3390/biology12020289.

Burtle GJ. Pond fertilization and liming in Georgia. UGA Extension Bulletin 867: 1-7. 2015.

Cavalcante DH, Caldini NN, Silva JLS, Lima FRS, Sá MVC. Imbalances in the hardness/alkalinity ratio of water and Nile tilapia’s growth performance. Acta Scientiarum, 2014; 36(1): 49-54, https://doi.org/10.4025/actascitechnol.v36i1.18995.

Antonangelo JA, Neto JF, Crusciol CAC, Zhang H, Alleoni LRF. Lime and calcium-magnesium silicate cause chemical attributes stratification in no-till fields. Soil and Tillage Research. 2022; 224: 105522. https://doi.org/10.1016/j.still.2022.105522.

Poleo G, Aranbarrio JV, Mendoza L, Romero O. Cultivo de cachama blanca en altas densidades y en dos sistemas cerrados. Pesquisa Agropecuária Brasileira. 2011; 46(4): 429-437. https://doi.org/10.1590/S0100-204X2011000400013.

Song JY, Zhang CX, Wang L, Song K, Hu SC Zhang L. Effects of dietary calcium levels on growth and tissue mineralization in Japanese seabass, Lateolabrax japonicus. Aquaculture Nutrition. 2017; 23(3): 637-648. https://doi.org/10.1111/anu.12431.

Lall SP Kaushik SJ. Nutrition and metabolism of minerals in fish. Animals. 2021; 11(09): 2711. https://doi.org/10.3390/ani11092711.

Uwitonze AM, Razzaque MS. Role of magnesium in vitamin D activation and function. Journal of Osteopathic Medicine. 2018; 118(3): 181-189. https://doi.org/10.7556/jaoa.2018.037.

Wei SP., Jiang, WD., Wu, P., Liu1, Y., Zeng, Y.Y., Jiang, J., Kuang, S.Y., Tang, L., Zhang, Y.A., Zhou, X.Q. & Feng, L. (2018). Dietary magnesium defciency impaired intestinal structural integrity in grass carp (Ctenopharyngodon idella). Scientific Reports. 8, 12705 https://doi.org/10.1038/s41598-018-30485-8.

Liu Y, Liu YN, Tian XC, Liu HP, Wen B, Wang N, Gao JZ, Chen ZZ. Growth and tissue calcium and phosphorus deposition of juvenile discus fish (Symphysodon haraldi) fed with graded levels of calcium and phosphorus. Aquaculture. 2021; 541: 736755. https://doi.org/10.1016/j.aquaculture.2021.736755.

Emerenciano MG, Arnold S, Perrin T. Sodium metasilicate supplementation in culture water on growth performance, water quality and economics of indoor commercial-scale biofloc-based Litopenaeus vannamei culture. Aquaculture. 2022; 560: 738566. https://doi.org/10.1016/j.aquaculture.2022.738566.

Boyd CE. Silicon, diatoms in aquaculture. Global Aquaculture Advocate. 2014; 17: 38-39.

Menezes WF, Souza ER, Pedreira RSF, Amorim MPS, Schorer M, dos Santos JCE, Pelli A Pedreira MM. Calcium silicate and soil in the intensive cultivation of Nile tilapia. Acta Biologica Brasiliensia. 2023; 6(2): 43-62. https://doi.org/10.18554/acbiobras.v6i2.7273.

Calonego JC, Mora VS, Santos CH, de Oliveira L. Calagem e silicatagem em solo incubado com diferentes umidades. Colloquium Agrariae. 2012; 8(2): 46-56. https://doi.org/10.5747/ca.2012.v08.n1.a078.

de Lima Filho, OF, da Silva CJ Avaliação agronômica do silicato de cálcio e magnésio granulado na cultura da cana-de-açúcar. 2017.

Saraswathy R, Muralidhar M, Sanjoy D, Kumararaja P, Suvana S, Lalitha N, Katneni VK, Nagavel A, Vijayan KK. Changes in soil and water quality at sediment–water interface of Penaeus vannamei culture pond at varying salinities. Aquaculture Research. 2019; 50(4): 1096-1106. https://doi.org/10.1111/are.13984.

Heiniger RW, McBride RG, Clay DE. Using soil electrical conductivity to improve nutrient management. Agronomy Journal. 2003; 95(3): 508-519. https://doi.org/10.2134/agronj2003.5080.

Nobre GR, Lima GS, Gheyi HR, Soares LAA, Silva AO. Crescimento, consumo e eficiência do uso da água pela mamoneira sob estresse salino e nitrogênio. Revista Caatinga. 2014; 27(2): 148 – 158.

Pieroni S, Olier BS, Lima IR, Sanches IM, Kuhnen VV, Sanches EG. Can use of substrates affect water quality in aquatic organism culture?. Aquaculture International. 2021; 29(4): 1771-1783. https://doi.org/10.1007/s10499-021-00718-1.

Akkoyunlu A Akiner ME. Pollution evaluation in streams using water quality indices: A case study from Turkey's Sapanca Lake Basin. Ecological Indicators. 2012; 18: 201-211. https://doi.org/10.1016/j.ecolind.2011.12.018.

Yi Y, Lin CK, Diana JS. Techniques to mitigate clay turbidity problems in fertilized earthen fish ponds. Aquacultural Engineering. 2003; 27(1), 39-51. https://doi.org/10.1016/S0144-8609(02)00039-0.

Wing JDB, Champneys TS, Ioannou CC. The impact of turbidity on foraging and risk taking in the invasive Nile tilapia (Oreochromis niloticus) and a threatened native cichlid (Oreochromis amphimelas). Behavioral Ecology and Sociobiology. 2001; 75(3): 49. https://doi.org/10.1007/s00265-021-02984-8.

Helfrich LA, Neves RJ, Parkhurst JA. Liming acidified lakes and ponds. Publication 420-254. Petersburg: Virginia Cooperative Extension; 2001.

El-Greisy ZAEB, Ahmed NAM. Effect of prolonged ammonia toxicity on fertilized eggs, hatchability and size of newly hatched larvae of Nile tilapia, Oreochromis niloticus. Egyptian journal of aquatic research. 2016; 42(2): 215-222. https://doi.org/10.1016/j.ejar.2016.04.001.

Benli AÇK, Köksal G. The Acute Toxicity of Ammonia on Tilapia (Oreochromis niloticus L.) Larvae and Fingerlings. Turkish Journal of Veterinary & Animal Sciences. 2005; 29(2): 339-344. Article 23. Available at: https://journals.tubitak.gov.tr/veterinary/vol29/iss2/23.

Sipaúba-Tavares LHS. Limnologia aplicada à aquicultura. Jaboticabal – SP: FUNEP, 1995.

Santhosh B, Singh NP. Guidelines for water quality management for fish culture in Tripura, ICAR Research Complex for NEH Region, Tripura Center, Lembucherra-799210, Tripura (west). Publication no. 29, 2007.

Kubitza F. Qualidade da água no SARs–monitoramento e correção. Panorama da Aquicultura. 2022; 31: 14-23.

Piedras SRN, Oliveira JLR, Moraes PRR, Bager A. Toxicidade aguda da amônia não ionizada e do nitrito em alevinos de Cichlasoma facetum (Jenyns, 1842). Ciência e agrotecnologia. 2006; 30: 1008-1012. https://doi.org/10.1590/S1413-70542006000500027.

Lima, RLD, Braun N, Kochhann D, Lazzari R, Radünz Neto J, Moraes BS, Loro V, Baldisserotto B. Survival, growth and metabolic parameters of silver catfish, Rhamdia quelen, juveniles exposed to different waterborne nitrite levels. Neotropical Ichthyology. 2011; 9(1):147-152. https://doi.org/10.1590/S1679-622520110050000 04.

USGS Saline Water and Salinity. 2018. Disponível em: 15 setembro de 2024, Acessado em: Saline Water and Salinity | U.S. Geological Survey (usgs.gov).

Fridman S, Bron J, Rana K. Influence of salinity on embryogenesis, survival, growth and oxygen consumption in embryos and yolk-sac larvae of the Nile tilapia. Aquaculture. 2012; 334: 182–190. doi:10.1016/j.aquaculture.2011.12.034.

de Azevedo RV, de Oliveira KF, Flores-Lopes F, Teixeira-Lanna EA, Takishita SS, Tavares-Braga LG Responses of Nile tilapia to different levels of water salinity. Latin American journal of aquatic research. 2015; 43(5): 828-835.

Kamal AHMM, Mair GC. Salinity tolerance in superior genotypes of tilapia, Oreochromis niloticus, Oreochromis mossambicus and their hybrids. Aquaculture. 2005; 247(1-4):189-201. https://doi.org/10.1016/j.aquaculture.2005. 02.008.

Mirera DO, Okemwa D. Salinity tolerance of Nile tilapia (Oreochromis niloticus) to seawater and growth responses to different feeds and culture systems. Western Indian Ocean Journal of Marine Science. 2023; 22(2): 75-85. 10.4314/wiojms.v22i2.6.

Downloads

Published

2024-10-01

How to Cite

Ferreira Menezes, W. ., Rodrigues Souza, E. ., Sá Fortes Pedreira, R. ., Philip Santos Amorim, M. ., Campos Silva, R. ., Pelli, A. ., & Mattos Pedreira, M. (2024). CALCIUM AND MAGNESIUM SILICATE AND SOIL AS ENVIRONMENTAL STABILIZERS IN THE CULTIVATION OF NILE TILAPIA LARVAE IN THE RECIRCULATION SYSTEM. Acta Biologica Brasiliensia, 7(2), 130–150. https://doi.org/10.18554/acbiobras.v7i2.7994

Issue

Section

Artigos

Most read articles by the same author(s)