Chemical profile of the twigs of Ozoroa obovata by HPLC-MS-ESI and antimicrobial activity

Autores/as

  • Domingos Augusto João UFU / Universidade de Moçambique
  • Tiara da Costa Silva UFU
  • Diego Godina Prado UFU
  • Carlos Henrique Gomes Martins UFU
  • Mariana Brentini Santiago UFU
  • Luiz Ricardo Goulart UFU
  • Mário Machado Martins UFU
  • Francisco José Torres de Aquino UFU
  • Alberto de Oliveira UFU
  • Raquel Maria Ferreira de Sousa UFU
  • Luís Carlos Scalon Cunha UFU
  • Sérgio Antônio Lemos de Morais UFU

DOI:

https://doi.org/10.18554/rbcti.v5i2.4359

Palabras clave:

antimicrobial activity, phenolics, flavonoids, Ozoroa obovata

Resumen

In Mozambique, a large part of the population depends on plants for the treatment of various diseases. However, some of them have been little studied in relation to chemical and biological aspects. Among these species, Ozoroa obovata is widely used in traditional medicine in Mozambique. The factors that influence the use of medicinal plants in developing countries are mainly cultural habits, the inefficiency of the health system and the high cost of medicines. This work aimed to study the chemical composition and evaluate the antimicrobial activity of the twigs of O. obovata. Through the analysis by liquid chromatography coupled to mass spectrometry with electrospray ionization (HPLC-MS-ESI), it was possible to propose that in the ethanolic extract of the twigs, most of the constituents belong to the classes of phenolic acids and flavonoid. The phenolic compounds were represented by quinic, gallic and protocatechuic acids and five anacardic acids, whereas flavonoids were represented by mangiferin, taxifolin and quercetin mono and dihexoside. The extract was evaluated against bacteria in the oral cavity and showed moderate activity against Streptococcus mutans, S. mitis and Porphyromonas gingivalis (minimum inhibitory concentration - MIC 400 µg mL–1). In relation antifungal test, the extract showed activity against Candida albicans with MIC of 3000 µg mL–1. The biological results indicated that the twigs of O. obovata have bioactive metabolites with antimicrobial potential.

Citas

ABU-REIDAH, I. M.; ALI-SHTAYEH, M. S.; JAMOUS, R. M.; ARRÁEZ-ROMÁN, D.; SEGURA-CARRETERO, A. HPLC–DAD–ESI-MS/MS screening of bioactive components from Rhus coriaria L. (Sumac) fruits. Food Chemistry, v. 166, p. 179-191, 2015.

AHMED, A. S.; MCGAW, L. J.; MOODLEY, N.; NAIDOO, V.; ELOFF, J. N. Cytotoxic, antimicrobial, antioxidant, antilipoxygenase activities and phenolic composition of Ozoroa and Searsia species (Anacardiaceae) used in South African traditional medicine for treating diarrhoea. South African Journal of Botany, v. 95, p. 9-18, 2014.

AKHALWAYA, S.; VAN VUUREN, S.; PATEL, M. An in vitro investigation of indigenous South African medicinal plants used to treat oral infections. Journal of Ethnopharmacology, v. 210, p. 359-371, 2018.

ANJUM, M. M.; PATEL, K. K.; PANDEY, N.; TILAK, R.; AGRAWAL, A. K.; SINGH, S. Development of Anacardic Acid/hydroxypropyl-β-cyclodextrin inclusion complex with enhanced solubility and antimicrobial activity. Journal of Molecular Liquids, v. 296, p. 112085, 2019.

BANDEIRA, S. O.; GASPAR, F.; PAGULA, F. P. African Ethnobotany and Healthcare: Emphasis on Mozambique. Pharmaceutical Biology, v. 39, n. sup1, p. 70-73, 2001.

BARBOSA, F.; HLASHWAYO, D.; SEVASTYANOV, V.; CHICHAVA, V.; MATAVEIA, A.; BOANE, E. et al. Medicinal plants sold for treatment of bacterial and parasitic diseases in humans in Maputo city markets, Mozambique. BMC Complementary Medicine and Therapies, v. 20, n. 1, p. 19, 2020.

BEN SAID, R.; ARAFA I, H.; USAM A, M.; ABDULLAH SULAIMAN, A.-A.; KOWALCZYK, M. et al. Tentative Characterization of Polyphenolic Compounds in the Male Flowers of Phoenix dactylifera by Liquid Chromatography Coupled with Mass Spectrometry and DFT. International Journal of Molecular Sciences, v. 18, n. 3, p. 1-18, 2017a.

BEN SAID, R.; HAMED, A. I.; MAHALEL, U. A.; AL-AYED, A. S.; KOWALCZYK, M.; MOLDOCH, J. et al. Tentative Characterization of Polyphenolic Compounds in the Male Flowers of Phoenix dactylifera by Liquid Chromatography Coupled with Mass Spectrometry and DFT. International journal of molecular sciences, v. 18, n. 3, p. 512, 2017b.

BOUARAB-CHIBANE, L.; FORQUET, V.; LANTÉRI, P.; CLÉMENT, Y.; LÉONARD-AKKARI, L.; OULAHAL, N. et al. Antibacterial Properties of Polyphenols: Characterization and QSAR Models. Frontiers in Microbiology, v. 10, n. 829, p., 2019.

BRUSCHI, P.; MANCINI, M.; MATTIOLI, E.; MORGANTI, M.; SIGNORINI, M. A. Traditional uses of plants in a rural community of Mozambique and possible links with Miombo degradation and harvesting sustainability. Journal of ethnobiology and ethnomedicine, v. 10, p. 59-59, 2014.

CALIXTO, J. B. The role of natural products in modern drug discovery. Anais da Academia Brasileira de Ciências, v. 91, p. 3-7, 2019.

CHAVES, M. H. Análise de extratos de plantas por CCD: uma metodologia aplicada à disciplina "química orgânica". Quimica Nova, v. 20, p. 560-562, 1997.

CHIMENOS-KÜSTNER, E.; GIOVANNONI, M. L.; SCHEMEL-SUÁREZ, M. Disbiosis como factor determinante de enfermedad oral y sistémica: importancia del microbioma. Medicina Clínica, v. 149, n. 7, p. 305-309, 2017.

CHRISTELLE, T. D.; HUSSAIN, H.; DONGO, E.; HERMINE, J.-M. B.; AHMED, I.; KROHN, K. Ozocardic A: a new alkylanacardic acid from Ozoroa pulcherrima. Journal of Asian Natural Products Research, v. 13, n. 1, p. 84-87, 2011.

CLSI. Methods for dilution antimicrobial susceptibility tests for bacteria that grow aerobically, in CLSI Document M7-A9. 9 ed. Clinical and Laboratory Standards Institute, Wayne, PA, 2012a.

CLSI. Methods for antimicrobial susceptibility testing of anaerobic bacteria, in CLSI document M11-A8. 8 ed. Clinical and Laboratory Standards Institute, Wayne, PA, 2012b.

CLSI. Reference method for broth dilution antifungal susceptibility testing of yeasts, in CLSI Document M27-A3. 34 ed. Clinical and Laboratory Standards Institute, Wayne, PA, 2008.

COSTA SILVA, T. D.; JUSTINO, A. B.; PRADO, D. G.; KOCH, G. A.; MARTINS, M. M.; SANTOS, P. D. S. et al. Chemical composition, antioxidant activity and inhibitory capacity of α-amylase, α-glucosidase, lipase and non-enzymatic glycation, in vitro, of the leaves of Cassia bakeriana Craib. Industrial Crops and Products, v. 140, p. 111641, 2019.

DORTA, E.; GONZÁLEZ, M.; LOBO, M. G.; SÁNCHEZ-MORENO, C.; DE ANCOS, B. Screening of phenolic compounds in by-product extracts from mangoes (Mangifera indica L.) by HPLC-ESI-QTOF-MS and multivariate analysis for use as a food ingredient. Food Research International, v. 57, p. 51-60, 2014.

ERŞAN, S.; GÜÇLÜ ÜSTÜNDAĞ, Ö.; CARLE, R.; SCHWEIGGERT, R. M. Identification of Phenolic Compounds in Red and Green Pistachio (Pistacia vera L.) Hulls (Exo- and Mesocarp) by HPLC-DAD-ESI-(HR)-MSn. Journal of Agricultural and Food Chemistry, v. 64, n. 26, p. 5334-5344, 2016.

GÓMEZ-ROMERO, M.; SEGURA-CARRETERO, A.; FERNÁNDEZ-GUTIÉRREZ, A. Metabolite profiling and quantification of phenolic compounds in methanol extracts of tomato fruit. Phytochemistry, v. 71, n. 16, p. 1848-1864, 2010.

GRACE, O. M.; PRENDERGAST, H. D. V.; JÄGER, A. K.; VAN STADEN, J.; VAN WYK, A. E. Bark medicines used in traditional healthcare in KwaZulu-Natal, South Africa: An inventory. South African Journal of Botany, v. 69, n. 3, p. 301-363, 2003.

GREEN, I. R.; TOCOLI, F. E.; LEE, S. H.; NIHEI, K.-I.; KUBO, I. Design and evaluation of anacardic acid derivatives as anticavity agents. European Journal of Medicinal Chemistry, v. 43, n. 6, p. 1315-1320, 2008.

HAN, J.; YE, M.; QIAO, X.; XU, M.; WANG, B.-R.; GUO, D.-A. Characterization of phenolic compounds in the Chinese herbal drug Artemisia annua by liquid chromatography coupled to electrospray ionization mass spectrometry. Journal of Pharmaceutical and Biomedical Analysis, v. 47, n. 3, p. 516-525, 2008.

HOKKEN, M. W. J.; ZWAAN, B. J.; MELCHERS, W. J. G.; VERWEIJ, P. E. Facilitators of adaptation and antifungal resistance mechanisms in clinically relevant fungi. Fungal Genetics and Biology, v. 132, p. 103254, 2019.

JATSA, H. B.; FEUSSOM, N. G.; FEMOE, U. M.; KENFACK, M. C.; NKONDO, E. T.; KADJI FASSI, J. B. et al. Evaluation of the schistosomicidal, antioxidant and anti-inflammatory activities of the ethyl acetate fraction from Ozoroa pulcherrima Schweinf. Roots on Schistosoma mansoni-induced liver pathology in mice and its phytochemical characterization. Journal of Ethnopharmacology, v. 238, p. 111883, 2019.

KUBO, I.; MUROI, H.; HIMEJIMA, M.; YAMAGIWA, Y.; MERA, H.; TOKUSHIMA, K. et al. Structure-antibacterial activity relationships of anacardic acids. Journal of Agricultural and Food Chemistry, v. 41, n. 6, p. 1016-1019, 1993.

KUETE, V. Potential of Cameroonian Plants and Derived Products against Microbial Infections: A Review. Planta Medica, v. 76, n. 14, p. 1479-1491, 2010.

LASANO, N. F.; HAMID, A. H.; KARIM, R.; DEK, M. S. P.; SHUKRI, R.; SHAZINI RAMLI, N. Nutritional Composition, Anti-Diabetic Properties and Identification of Active Compounds Using UHPLC-ESI-Orbitrap-MS/MS in Mangifera odorata L. Peel and Seed Kernel. Molecules, v. 24, n. 2, p. 320, 2019.

LIMA, M. C.; PAIVA DE SOUSA, C.; FERNANDEZ-PRADA, C.; HAREL, J.; DUBREUIL, J. D.; DE SOUZA, E. L. A review of the current evidence of fruit phenolic compounds as potential antimicrobials against pathogenic bacteria. Microbial Pathogenesis, v. 130, p. 259-270, 2019.

LIU, Y.; ABREU, P. J. M. Long chain alkyl and alkenyl phenols from the roots of Ozoroa insignis. Journal of the Brazilian Chemical Society, v. 17, p. 527-532, 2006.

MAMIDYALA, S. K.; RAMU, S.; HUANG, J. X.; ROBERTSON, A. A. B.; COOPER, M. A. Efficient synthesis of anacardic acid analogues and their antibacterial activities. Bioorganic & Medicinal Chemistry Letters, v. 23, n. 6, p. 1667-1670, 2013.

MAREGESI, S. M.; PIETERS, L.; NGASSAPA, O. D.; APERS, S.; VINGERHOETS, R.; COS, P. et al. Screening of some Tanzanian medicinal plants from Bunda district for antibacterial, antifungal and antiviral activities. Journal of Ethnopharmacology, v. 119, n. 1, p. 58-66, 2008.

MLIGO, C. Post fire regeneration of indigenous plant species in the Pugu Forest Reserve, Tanzania. Global Ecology and Conservation, v. 18, p. e00611, 2019.

NAIDOO, D.; VAN VUUREN, S. F.; VAN ZYL, R. L.; WET, H. Plants traditionally used individually and in combination to treat sexually transmitted infections in northern Maputaland, South Africa: Antimicrobial activity and cytotoxicity. Journal of Ethnopharmacology, v. 149, n. 3, p. 656-667, 2013.

NCUBE, B.; FINNIE, J. F.; VAN STADEN, J. In vitro antimicrobial synergism within plant extract combinations from three South African medicinal bulbs. Journal of Ethnopharmacology, v. 139, n. 1, p. 81-89, 2012.

NEWMAN, D. J.; CRAGG, G. M. Natural Products as Sources of New Drugs from 1981 to 2014. Journal of Natural Products, v. 79, n. 3, p. 629-61, 2016.

NG’ANG’A, M. M.; HUSSAIN, H.; CHHABRA, S.; LANGAT-THORUWA, C.; KROHN, K. Chemical constituents from the root bark of Ozoroa insignis. Biochemical Systematics and Ecology, v., n. 37, p. 116–119, 2009.

NYABERI, M. O.; ONYANGO, C. A.; MATHOOKO, F. M.; MAINA, J. M.; MAKOBE, M.; MWAURA, F. Bioactive fractions in the stem charcoal of Ozoroa insignis used by the pastoral communities in West Pokot to preserve milk. Journal of Applied Biosciences, v., n. 26, p. 1653 - 1658, 2010.

OLIVEIRA, D. M.; SILVA, T. F. R.; MARTINS, M. M.; MORAIS, S. A. L. D.; CHANG, R.; AQUINO, F. et al. Antifungal and cytotoxicity activities of Banisteriopsis argyrophylla leaves. Journal of Pharmacy and Pharmacy, v. 70, n. 11, p. 1541-1552, 2018.

PAN, S.-Y.; LITSCHER, G.; GAO, S.-H.; ZHOU, S.-F.; YU, Z.-L.; CHEN, H. Q. et. al. Historical perspective of traditional indigenous medical practices: the current renaissance and conservation of herbal resources. Evidence-based complementary and alternative medicine : eCAM, v. 2014, p. 525340-525340, 2014.

PERLIN, D. S.; RAUTEMAA-RICHARDSON, R.; ALASTRUEY-IZQUIERDO, A. The global problem of antifungal resistance: prevalence, mechanisms, and management. The Lancet Infectious Diseases, v. 17, n. 12, p. e383-e392, 2017.

PRESTINACI, F.; PEZZOTTI, P.; PANTOSTI, A. Antimicrobial resistance: a global multifaceted phenomenon. Pathogens and global health, v. 109, n. 7, p. 309-318, 2015.

ROCHA, E. O.; CUNHA, L. C. S.; SILVA, M. V. S. G.; FREITAS, T. R.; NASCIMENTO, E. A.; SILVA, L. O. et al. Composição química e atividade antimicrobiana do óleo essencial das flores de Banisteriopsis campestris (A. Juss.) Little. Revista Virtual de Quimica, v. 10, n. 5, p. 1562-1577, 2018.

SAID, R. B.; HAMED, A. I .; MAHALEL, U. A.; AL-AYED, A. S.; KOWALCZYK, M.; MOLDOCH, J. et al. Tentative characterization of polyphenolic compounds in the male flowers of Phoenix dactylifera by liquid chromatography coupled with mass spectrometry and DFT. International Journal of Molecular Science, v. 18, n. 3, p. 1-18, 2017.

SEN, T.; SAMANTA, S. K. Medicinal Plants, Human Health and Biodiversity: A Broad Review. In: MUKHERJEE, J. Biotechnological Applications of Biodiversity, Berlin, Heidelberg: Springer Berlin Heidelberg, 2014. p. 59-110.

SHARIFIFAR, F.; ANSARI DOGAHEH, M.; ESLAMINEJAD, T.; OHADI, M.; DOUZANDEH MOBARREZ, B. et al. Antimicrobial Potency of Plant Species: A Review. European Journal of Medicinal Plants, v. 11, p. 1-17, 2016.

SIMOES, C. M. O.; SCHENKEL, E. P.; MELLO, J. C. P.; MENTZ, L. A.; PETROVICK, P. R. Farmacognosia do produto natural ao medicamento. Porto Alegre: Artmed, 2017. 486 p.

SINGH, R. Medicinal plants: A review. Journal of Plant Sciences, v. 3, n. 1-1, p. 50-55, 2015.

SUN, J.; LIANG, F.; BIN, Y.; LI, P.; DUAN, C. Screening Non-colored Phenolics in Red Wines using Liquid Chromatography/Ultraviolet and Mass Spectrometry/Mass Spectrometry Libraries. Molecules, v. 12, n. 3, p. 679-693, 2007.

TIMMERMANN, L.; SMITH-HALL, C. Commercial Medicinal Plant Collection Is Transforming High-altitude Livelihoods in the Himalayas. Mountain Research and Development, v. 39, n. 3, p. 13-21, 2020.

TOCCI, N.; WEIL, T.; PERENZONI, D.; NARDUZZI, L.; MADRIÑÁN, S.; CROCKETT, S. et al. Phenolic profile, chemical relationship and antifungal activity of Andean Hypericum species. Industrial Crops and Products, v. 112, p. 32-37, 2018.

VAN VUUREN, S.; HOLL, D. Antimicrobial natural product research: A review from a South African perspective for the years 2009–2016. Journal of Ethnopharmacology, v. 208, p. 236-252, 2017.

VAN VUUREN, S. F. Antimicrobial activity of South African medicinal plants. Journal of Ethnopharmacology, v. 119, n. 3, p. 462-472, 2008.

WAGNER, H.; BLADT, S. Plant drug analysis: a thin layer chromatography atlas. 2. ed. Berlin: Springer, 1996. 384 p.

WHITE, T. C.; FINDLEY, K.; DAWSON, T. L., JR.; SCHEYNIUS, A.; BOEKHOUT, T.; CUOMO, C. A. et al. Fungi on the skin: dermatophytes and Malassezia. Cold Spring Harbor Perspectives in Medicine, v. 4, n. 8, p. a019802, 2014.

WHO. World Health Organization. 2020. Available in: <https://www.who.int/news-room/fact-sheets/detail/antimicrobial-resistance>. Access in: Feb. 2020.

WÜRGER, G.; MCGAW, L. J.; ELOFF, J. N. Tannin content of leaf extracts of 53 trees used traditionally to treat diarrhoea is an important criterion in selecting species for further work. South African Journal of Botany, v. 90, p. 114-117, 2014.

WYREPKOWSKI, C. C.; COSTA, D. L. M. G. D.; SINHORIN, A. P.; VILEGAS, W.; DE GRANDIS, R. A.; RESENDE, F. A. et al. Characterization and quantification of the compounds of the ethanolic extract from Caesalpinia ferrea stem bark and evaluation of their mutagenic activity. Molecules, v. 19, n. 10, p. 16039-16057, 2014.

YE, M.; YANG, W.-Z.; LIU, K.-D.; QIAO, X.; LI, B.-J.; CHENG, J. et al. Characterization of flavonoids in Millettia nitida var. hirsutissima by HPLC/DAD/ESI-MS (n). Journal of pharmaceutical analysis, v. 2, n. 1, p. 35-42, 2012.

YORK, T.; DE WET, H.; VAN VUUREN, S. F. Plants used for treating respiratory infections in rural Maputaland, KwaZulu-Natal, South Africa. Journal of Ethnopharmacology, v. 135, n. 3, p. 696-710, 2011.

YORK, T.; VAN VUUREN, S. F.; DE WET, H. An antimicrobial evaluation of plants used for the treatment of respiratory infections in rural Maputaland, KwaZulu-Natal, South Africa. Journal of Ethnopharmacology, v. 144, n. 1, p. 118-127, 2012.

ZACCHINO, S. A.; BUTASSI, E.; LIBERTO, M. D.; RAIMONDI, M.; POSTIGO, A.; SORTINO, M. Plant phenolics and terpenoids as adjuvants of antibacterial and antifungal drugs. Phytomedicine, v. 37, p. 27-48, 2017.

ZARCO, M.; VESS, T.; GINSBURG, G. The oral microbiome in health and disease and the potential impact on personalized dental medicine. Oral Diseases, v. 18, p. 109-120, 2011.

Descargas

Publicado

2021-02-26

Cómo citar

João, D. A., Silva, T. da C., Prado, D. G., Martins, C. H. G., Santiago, M. B., Goulart, L. R., Martins, M. M., de Aquino, F. J. T., de Oliveira, A., de Sousa, R. M. F., Cunha, L. C. S., & de Morais, S. A. L. (2021). Chemical profile of the twigs of Ozoroa obovata by HPLC-MS-ESI and antimicrobial activity. REVISTA BRASILEÑA DE CIENCIA, TECNOLOGÍA E INNOVACIÓN, 5(2), 140–155. https://doi.org/10.18554/rbcti.v5i2.4359