Assessing soil compaction in sites subjected to different management systems
DOI:
https://doi.org/10.18554/rbcti.v9i1.7017Palabras clave:
land use, bulk density, soil porosity, soil resistance, family farmingResumen
Soil physical, chemical and biological quality is under constant change in rural areas, mainly in small farms where family farming prevails. Land use in these properties is maximized to ensure profitability. The aim of the current study is to investigate how different land-use types affect soil compaction in a small farm in Southeastern Paraná State. The herein investigated land-use types comprised forest, pasture, yerba mate cultivation, eucalyptus reforestation, no-till and conventional tillage. Soil density, resistance, porosity and moisture were the analyzed variables. The current findings enabled concluding that pressure deriving from different land uses affected soil compaction. Pasture recorded the highest soil compaction indices, whereas forest recorded the best indices for this variable. On the other hand, different soil management practices did not significantly affect soil density and porosity in agriculture. However, there were significant variations in soil moisture and resistance.
Citas
ALMAGRO, M.; DÍAZ-PEREIRA, E.; BOIX-FAYOS, C.; ZORNOZA, R.; SÁNCHEZ-NAVARRO, V. RE, et al. The combination of crop diversification and no tillage enhances key soil quality parameters related to soil functioning without compromising crop yields in a low-input rainfed almond orchard under semiarid Mediterranean conditions. Agriculture, Ecosystems & Environment, v. 345, 2023. DOI: https://doi.org/10.1016/j.agee.2022.108320. Acesso em: 15 jun. 2023.
ANTONELI, V.; THOMAZ, E. L. Perda de solo em cultivo de tabaco sob diferentes formas de cultivo na região Sudeste do Paraná. Revista Brasileira de Geomorfologia, v. 15, n.3, p. 455–469. 2014.
ANTONELI, V; THOMAZ, E. L. Relação entre o cultivo de fumo (Nicotina tabacum L.) e a produção de sedimentos na Bacia do Arroio Boa Vista, Guamiranga – PR. Geografia, Rio Claro, v. 35, n. 2, p.383-397, 2010.
BÉCEL, C.; VERCAMBRE, G.; PAGÈS, L. Soil penetration resistance, a suitable soil property to account for variations in root elongation and branching. Plant Soil, v. 353, p. 169-180, 2011. DOI: https://doi.org/ 10.1007/s11104-011-1020-7. Acesso em: 07 abr. 2023
BENEVENUTE P. A.N.; MORAIS, E G.; SOUZA A. A.; VASQUES, I. C.F.; CARDOSO, D. P.; SALES, F. R. et al. Penetration resistance: An effective indicator for monitoring soil compaction in pastures. Ecological Indicators, v. 117, 2020. DOI: https://doi.org/10.1016/j.ecolind.2020.106647. Acesso em: 02 set. 2022.
BINDRABAN, P. S.; VELDE, M.; YE L.; BERG M.; MATERECHERA, S.; KIBA, D.I. Assessing the impact of soil degradation on food production. Current Opinion in Environmental Sustainability, v. 4, n. 5, p. 478-488, 2022. DOI: https://doi.org/10.1016/j.cosust.2012.09.015. Acesso em: 20 out. 2022.
CHEN, H.; HOU, R.; GONG, Y.; LI, H., FAN, M.; KUZYAKOV, Y. Effects of 11?years of conservation tillage on soil organic matter fractions in wheat monoculture in Loess Plateau of China. Soil & Tillage Research, v. 106, p. 85–94. 2009.
CIZUNGU, L.; STAELENS J.; HUYGENS D.; WALANGULULU J.; MUHINDO D.; CLEEMPUT O. V. Litterfall and leaf litter decomposition in a central African tropical mountain forest and Eucalyptus plantation. Forest Ecology and Management, v. 326, p. 109–116, 2014. DOI: https://doi.org/10.1016/j.foreco.2014.04.015. Acesso em: 25 set. 2022
COLOMBI, T.; TORRES, L.C.; WALTER, A.; KELLER, T. Feedbacks between soil penetration resistance, root architecture and water uptake limit water accessibility and crop growth – a vicious circle. Science of The Total Environment, v. 626, p. 1026-1035, 2018. DOI: https://doi.org/10.1016/j.scitotenv.2018.01.129. Acesso em: 08 nov. 2022.
CORREA, J.; POSTMA, J. A.; WATT, M.; WOJCIECHOWSKI, T. Soil compaction and the architectural plasticity of root systems. J. Exp. Bot. v. 70, p. 6019– 6034. 2019.
DEMESSIE A.; SINGH B. R.; LAL R.; STRAND L. T. Leaf litter fall and litter decomposition under Eucalyptus and coniferous plantations in Gambo District, southern Ethiopia. Acta Agriculture Scandinavica, Section B-Soil e Plant Science, v. 62, n. 5, p. 467–476, 2012. DOI: https://doi.org/10.1080/09064710.2011.645497. Acesso em: 02 set. 2022.
DEXTER, R.; CZY?, E. A.; GA?E, O. P. A method for prediction of soil penetration resistance, Soil and Tillage Research, v. 93, n. 2, p. 412-419, 2007. DOI: https://doi.org/10.1016/j.still.2006.05.011. Acesso em: 01 fev. 2023.
DREWRY, J.J. CAMERON, K.C.; BUCHAN, G.D. Pasture yield and soil physical property responses to soil compaction from treading and grazing—review Australian Journal of Soil Research, v.46, n.3, p.237 – 256. 2008.
EMBRAPA – Empresa Brasileira de Pesquisa Agropecuária. Manual de Métodos de Análise de solo. 2. ed. Rio de Janeiro: Centro Nacional de Pesquisa de Solos, 1997.
FAO. The State of the World's Land and Water Resources for Food and Agriculture (SOLAW) Managing Systems at Risk FAO, Rome, Italy and Earthscan, Londres, 2011.
GAO, W.; WHALLEY, W. R.; TIAN, Z.; LIU, J.; REN T. A simple model to predict soil penetrometer resistance as a function of density, drying and depth in the field. Soil and Tillage Research, v. 155, p. 190-198, 2016. DOI: https://doi.org/10.1016/j.still.2015.08.004. Acesso em: 10 jul. 2023.
GHIMIRE R.; LAMICHHANE S.; ACHARYA B. S.; BISTA P.; SAINJU U. M. Tillage, Crop Residue, and Nutrient Management Effects on Soil Organic Carbon in Rice-Based Cropping Systems: A Review. Journal of Integrative Agriculture. v. 16, n. 1, p. 2095-3119, 2017. DOI: https://doi.org/10.1016/S2095-3119(16)61337-0. Acesso em: 04 jun. 2023.
GIRLANDA, M.; PEROTTO, S.; MOENNE-LOCCOZ, Y.; BERGERO, R.; LAZZARI, A.; DEFAGO, G. Impact of biocontrol Pseudomonas fluorescens CHA0 and a genetically modified derivative on the diversity of culturable fungi in the cucumber rhizosphere. Applied and Environmental Microbiology, v. 67, p. 1851–1864. 2001. DOI: https://doi.org/10.1128/AEM.67.4.1851-1864.2001. Acesso em: 09 abr. 2023.
GUEDES, B. S.; OLSSON, B. A.; KARLTUN, E. Effects of 34-year-old Pinus taeda and Eucalyptus grandis plantations on soil carbon and nutrient status in former miombo forest soils. Global Ecology and Conservation. v. 8, p. 190-202, 2016. DOI: https://doi.org/10.1016/j.gecco.2016.09.005. Acesso em: 07 abr. 2023.
HÅKANSSON I.; LIPIEC, J. A review of the usefulness of relative bulk density values in studies of soil structure and compaction. Soil and Tillage Research, v. 53, n. 2, p. 71-85. 2000.
HOBBS, P. R.; SAYRE, K.; GUPTA, R. The role of conservation agriculture in sustainable agriculture. Philosophical Transactions of the Royal Society, v. 363 p. 543-555, 2008. DOI: https://doi.org/10.1098/rstb.2007.2169. Acesso em: 15 jun. 2023.
HORN, R.; DOMA, H.; SOWISKA-JURKIEWICZ, A.; VAN OUWERKERK, C. Soil compaction processes and their effects on the structure of arable soils and the environment. Soil Till Res, v. 35, p. 23–36. 1995.
IAPAR –Instituto Agronômico do Paraná. Caracterização da Agricultura no Paraná. Londrina, 1995.
KATAYAMA, N.; OSAWA, T.; AMANO, T.; KUSUMOTO, Y. Are both agricultural intensification and farmland abandonment threats to biodiversity? A test with bird communities in paddy-dominated landscapes. Agriculture, Ecosystems & Environment v. 214, 27, p 21–30. 2015. DOI: https://doi.org/10.1016/j.agee.2015.08.014. Acesso em: 17 jun. 2023.
KING, A. E.; CONGREVES, K. A.; DEEN, B.; DUNFIELD, R. P.; VORONEY, R. P.; WING-RIDDLE, C. Quantifying the relationships between soil fraction mass, fraction carbon, and total soil carbon to assess mechanisms of physical protection. Soil Biology and Biochemistry, v. 135, p. 95-107, 2019. DOI: https://doi.org/10.1016/j.soilbio.2019.04.019. Acesso em: 10 ago. 2023.
LAL, R. Soil degradation by erosion. Land Degradation & Development, v. 12 n. 6, p. 519-539, 2001. DOI: https://doi.org/10.1002/ldr.472. Acesso em: 05 ago. 2023.
LLAUSÀS, A.; RIBAS A.; VARGA, D.; VILA, J. The evolution of agrarian practices and its effects on the structure of enclosure landscapes in the Alt Empordà (Catalonia, Spain), 1957–2001. Agriculture, Ecosystems & Environment, v. 129, n. 1–3, p 73–86, 2009. DOI: https://doi.org/10.1016/j.agee.2008.07.005. Acesso em: 10 jul. 2023.
MAILLARD, E.; PAYRAUDEAU, S.; FAIVRE, E.; GRÉGOIRE, C.; GANGLOFF, S.; IMFELD, G. Removal of pesticide mixtures in a stormwater wetland collecting runoff from a vineyard catchment. Sci. Total Environ, v. 409, p. 2317-2324, 2011. DOI: https://doi.org/ 10.1016/j.scitotenv.2011.01.057. Acesso em: 15 jul. 2023.
MCNABB, D.H.; STARTSEV, A.D.; NGUYEN, H. Soil wetness and traffic level effects on bulk density and air-filled porosity of compacted boreal forest soils. Soil Science Society of America Journal: v. 65, n. 4, p. 1238-1247. 2001.
MUELLER, L.; SCHINDLER, U.; MIRSCHEL, W.; SHEPHERD, T.G.; BALL, B. C.; HELMING, K.; NAWAZ, M.F.; BOURRIÉ, G.; TROLARD, F. Soil compaction impact and modelling. A review. Agron. Sustain. Dev, v.33, p. 291–309 2013.
NOURI A.; YOUSSEF F.; BASARAN M.; LEE J.; SAXTON, A. M.; ERPUL, G. The effect of fallow tillage management on aeolian soil losses in semiarid central Anatolia, Turkey. Agrosystems, Geosciences e Environment, v.1, n.1, 2018. DOI: https://doi.org/10.2134/age2018.07.0019. Acesso em: 14 jul. 2023.
PANAGOS, P.; ROSA, D. D. E.; LIAKOS, L.; LABOUYRIE, M.; BORRELLI, P.; BALLABIO, C. Soil bulk density assessment in Europe, Agriculture, Ecosystems & Environment, v. 364, 2024. DOI: https://doi.org/10.3390/rs12091365. Acesso em: 10 jun. 2023.
PEZARICO, C. R.; VITORINO, A.C.T.; MERCANTE, F.M.; DANIEL, O. Indicadores de qualidade do solo em sistemas agroflorestais. R Ci Agron. v. 56, p. 40-7. 2013.
PRESCOTT, C. E.; VESTERDAL. L. Decomposition and transformations along the continuum from litter to soil organic matter in forest soils. Forest Ecology and Management, v. 498, 2021. DOI: https://doi.org/10.1016/j.foreco.2021.119522. Acesso em: 10 jul. 2023.
PULIDO, M.; SCHNABEL, S.; LAVADO CONTADOR, J.F.; LOZANO-PARRA, J.; GONZÁLEZ, F. The impact of heavy grazing on soil quality and pasture production in rangelands of SW Spain. Land Degradation & Development. 2016
SALEM, H. M.; VALERO, C.; MUÑOZ, M. Á.; RODRÍGUEZ, M. G.; SILVA, L.L. Short-term effects of four tillage practices on soil physical properties, soil water potential, and maize yield. Geoderma, v. 237–238, p. 60-70, 2015. DOI: https://doi.org/10.1016/j.geoderma.2014.08.014. Acesso em: 05 abr. 2023.
SCHOENHOLTZ, S. H.; MIEGROET, H. V.; BURGER, J. A. A review of chemical and physical properties as indicators of forest soil quality: challenges and opportunities. Forest Ecology and Management, v. 138, n. 1–3, p. 335-356, 2000. DOI: https://doi.org/10.1016/S0378-1127(00)00423-0. Acesso em 10 nov. 2022.
SEMPLE, K.T.; REID, B.J.; FERMOR T.R. Review: impact of composting strategies on the treatment of soils contaminated with organic pollutants. Environmental Pollution. v.112, p. 269-283, 2001. DOI: https://doi.org/10.1016/S0269-7491(00)00099-3. Acesso em: 17 jul. 2023.
SHAO G.; AI J.; SUN Q.; HOU L.; DONG Y. Soil quality assessment under different forest types in the Mount Tai, central Eastern China. Ecological Indicators, v. 115, 2020. DOI: https://doi.org/10.1016/j.ecolind.2020.106439. Acesso em: 10 ago. 2023.
SILVA J. G. D.; KAGEYAMA A. A.; ROMÃO D. A.; WAGNER NETO J. A.; PINTO, L. C. G. Tecnologia e campesinato: O caso brasileiro. Revista de Economia Política, v. 3, n 4., p 135-142, 1983.
SOUZA R.; HARTZELL S.; FREIRE FERRAZ A.P.; ALMEIDA A.Q.; SOUSA LIMA J.R.; ANTONINO A.C.; SOUZA E.S. Dynamics of soil penetration resistance in water-controlled environments. Soil and Tillage Research, v. 205, 2021. DOI: https://doi.org/10.1016/j.still.2020.104768. Acesso em: 20 ago. 2023.
STOLF, R.; MURAKAMI, J. H.; BRUGNARO, C; SILVA L. G.; SILVA, L. C. F.; MARGARIDO, L. A. C. Penetrômetro de impacto Stolf - Programa Computacional de dados em EXCEL-VBA Revista Brasileira Ciência Solo, v.38, n.3, 2014. DOI: https://doi.org/10.1590/S0100-06832014000300009. Acesso em: 15 jul. 2023.
TELLES, T.S.; GUIMARÃES, M.D.F.; DECHEN, S.C.F. The costs of soil erosion. Revista Brasileira de Ciência do Solo, v. 35 p. 287-298, 2011. DOI: https://doi.org/10.1590/S0100-06832011000200001. Acesso em: 12 jul. 2023.
XIA, J.; REN, J.; ZHANG, S.; WANG, Y.; FANG, Y. Forest and grass composite patterns improve the soil quality in the coastal saline-alkali land of the Yellow River Delta, China. Geoderma, v. 349, p. 25-35, 2019. DOI: https://doi.org/10.1016/j.geoderma.2019.04.032. Acesso em: 12 ago. 2023.
YANG, Y.; WU, J.; ZHAO, S.; HAN, Q.; PAN, X.; HE, F.; CHEN, C. Assessment of the responses of soil pore properties to combined soil structure amendments using X-ray computed tomography. Scientific Reports, v. 8, p. 695. 2018.
YU, B.Q.; XIE, C. K.; CAI, S.Z.; CHEN, Y.; LV, Y.P.; MO, Z.L. et al. Effects of Tree Root Density on Soil Total Porosity and Non-Capillary Porosity Using a Ground Penetrating Tree Radar Unit in Shanghai, China. Sustainability, v. 10, n. 12, p. 4640, 2018. DOI: https://doi.org/10.3390/su10124640. Acesso em: 15 ago. 2023.
Descargas
Publicado
Cómo citar
Número
Sección
Licencia
Derechos de autor 2024 Emilly, Jessica , Robert, João , Valdemir Antoneli
Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-CompartirIgual 4.0.