FARMACOGENÉTICA DA TUBERCULOSE
DOI:
https://doi.org/10.18554/acbiobras.v7i1.7654Keywords:
Tuberculosis, Pharmacogenetic, Anti-TB drugsAbstract
Tuberculosis is a major cause of death worldwide and is especially prevalent in developing countries. It is known that the response to pharmacologic treatments can be influenced by several factors, including genetics, the focus of pharmacogenetics, and ethnicity. We conducted a review of the literature encompassing genes of pharmacogenetic interest to evaluate the data currently available in reference to treatment response alterations, allele frequencies, and interethnic differences. Through our statistical analyses, we were able to point out potential protective and risk variants for several ethnicities, especially for NAT2 gene, indicating future paths to be pursued by further initiatives for a future of safer and more effective tuberculosis treatments.
References
Daniel TM. The history of tuberculosis. Respir Med. 2006 Nov;100(11):1862–1870. PMID: 16949809.
World Health Organization. Tuberculosis [Internet]. 2022 [cited 2023 Jun 27]. Available from: https://www.who.int/health-topics/tuberculosis#tab=tab_1.
World Health Organization. Global Tuberculosis reporT 2022 [Internet]. 2022. Available from: http://apps.who.int/bookorders.
Dheda K, Barry CE, Maartens G. Tuberculosis. The Lancet. Lancet Publishing Group; 2016. p. 1211–1226. PMID: 26377143.
Furin J, Cox H, Pai M. Tuberculosis. The Lancet. Lancet Publishing Group; 2019. p. 1642–1656. PMID: 30904262.
Tiberi S, du Plessis N, Walzl G, Vjecha MJ, Rao M, Ntoumi F, Mfinanga S, Kapata N, Mwaba P, McHugh TD, Ippolito G, Migliori GB, Maeurer MJ, Zumla A. Tuberculosis: progress and advances in development of new drugs, treatment regimens, and host-directed therapies. The Lancet Infectious Diseases. Lancet Publishing Group; 2018. p. e183–e198. PMID: 29580819.
Feero WG, Guttmacher AE, Wang L, Mcleod HL, Weinshilboum RM. Genomic Medicine Genomics and Drug Response. n engl j med. 2011.
Luzum JA, Petry N, Taylor AK, Van Driest SL, Dunnenberger HM, Cavallari LH. Moving Pharmacogenetics Into Practice: It’s All About the Evidence! Clinical Pharmacology and Therapeutics. John Wiley and Sons Inc; 2021. p. 649–661. PMID: 34101169.
Ramos E, Doumatey A, Elkahloun AG, Shriner D, Huang H, Chen G, Zhou J, McLeod H, Adeyemo A, Rotimi CN. Pharmacogenomics, ancestry and clinical decision making for global populations. Pharmacogenomics Journal. Nature Publishing Group; 2014;14(3):217–222. PMID: 23835662.
Relling M V., Klein TE. CPIC: Clinical pharmacogenetics implementation consortium of the pharmacogenomics research network. Clinical Pharmacology and Therapeutics. 2011. p. 464–467. PMID: 21270786.
Lunenburg CATC, van der Wouden CH, Nijenhuis M, Crommentuijn-van Rhenen MH, de Boer-Veger NJ, Buunk AM, Houwink EJF, Mulder H, Rongen GA, van Schaik RHN, van der Weide J, Wilffert B, Deneer VHM, Swen JJ, Guchelaar HJ. Dutch Pharmacogenetics Working Group (DPWG) guideline for the gene–drug interaction of DPYD and fluoropyrimidines. European Journal of Human Genetics. Springer Nature; 2020 Apr 1;28(4):508–517. PMID: 31745289.
Whirl-Carrillo M, Huddart R, Gong L, Sangkuhl K, Thorn CF, Whaley R, Klein TE. An Evidence-Based Framework for Evaluating Pharmacogenomics Knowledge for Personalized Medicine. Clin Pharmacol Ther. John Wiley and Sons Inc; 2021 Sep 1;110(3):563–572. PMID: 34216021.
Nakanishi G, Pita-Oliveira M, Bertagnolli LS, Torres-Loureiro S, Scudeler MM, Cirino HS, Chaves ML, Miwa B, Rodrigues-Soares F. Worldwide Systematic Review of GSTM1 and GSTT1 Null Genotypes by Continent, Ethnicity, and Therapeutic Area. OMICS [Internet]. OMICS; 2022 Oct 1 [cited 2023 Jun 27];26(10):528–541. Available from: https://pubmed.ncbi.nlm.nih.gov/36112350/ PMID: 36112350.
R Core Team. R: A Language and Environment for Statistical Computing [Internet]. 2020 [cited 2023 Jan 14]. Available from: https://www.R-project.org/.
Gaedigk A, Casey ST, Whirl-Carrillo M, Miller NA, Klein TE. Pharmacogene Variation Consortium: A Global Resource and Repository for Pharmacogene Variation. Clinical Pharmacology and Therapeutics. John Wiley and Sons Inc; 2021. p. 542–545. PMID: 34091888.
Sherry ST, Ward M, Sirotkin K. dbSNP-Database for Single Nucleotide Polymorphisms and Other Classes of Minor Genetic Variation [Internet]. Available from: www.genome.org.
Rodrigues-Soares F, Peñas-Lledó EM, Tarazona-Santos E, Sosa-Macías M, Terán E, López-López M, Rodeiro I, Moya GE, Calzadilla LR, Ramírez-Roa R, Grazina M, Estévez-Carrizo FE, Barrantes R, LLerena A, Tinoco CA, Álvárez M, Borbón A, Céspedes-Garro C, Cobaleda J, de Andrés F, Delgado R, Dorado P, Fariñas H, Ferreiro V, Fricke-Galindo I, Galaviz-Hernández C, Garza-Ocañas L, Gilman RH, Hernández F, Jiménez-Arce G, Jung-Cook H, Lares-Aseff I, Lazalde-Ramos BP, Michelin L, Monroy-Jaramillo N, Naranjo MEG, Ortega-Vázquez A, Ortiz-López R, Pérez B, Pérez-Páramo YX, Remirez D, Rojas-Martínez A, Sarmiento AP, Scliar M, Terán S, Zamudio R. Genomic Ancestry, CYP2D6, CYP2C9, and CYP2C19 Among Latin Americans. Clin Pharmacol Ther. Nature Publishing Group; 2020 Jan 1;107(1):257–268. PMID: 31376146.
Borrell LN, Elhawary JR, Fuentes-Afflick E, Witonsky J, Bhakta N, Wu AHB, Bibbins-Domingo K, Rodríguez-Santana JR, Lenoir MA, Gavin JR, Kittles RA, Zaitlen NA, Wilkes DS, Powe NR, Ziv E, Burchard EG. Race and Genetic Ancestry in Medicine — A Time for Reckoning with Racism. New England Journal of Medicine. Massachusetts Medical Society; 2021 Feb 4;384(5):474–480. PMID: 33406325.
Jemnitz K, Heredi-Szabo K, Janossy J, Ioja E, Vereczkey L, Krajcsi P. ABCC2/Abcc2: A multispecific transporter with dominant excretory functions. Drug Metabolism Reviews. Informa Healthcare; 2010. p. 402–436. PMID: 20082599.
Nies AT, Keppler D. The apical conjugate efflux pump ABCC2 (MRP2). Pflugers Archiv European Journal of Physiology. 2007. p. 643–659. PMID: 16847695.
Bruckmueller H, Cascorbi I. ABCB1, ABCG2, ABCC1, ABCC2, and ABCC3 drug transporter polymorphisms and their impact on drug bioavailability: what is our current understanding? Expert Opinion on Drug Metabolism and Toxicology. Taylor and Francis Ltd.; 2021. p. 369–396. PMID: 33459081.
Alpana M, Daga MK, Aggarwal S, Nidhi A. Treatment for tuberculosis in a patient with Dubin-Johnson syndrome. BMJ Case Rep. BMJ Publishing Group; 2015 Aug 11;2015. PMID: 26264947.
Kim SH, Jee YK, Lee JH, Lee BH, Kim YS, Park JS, Kim SH. ABCC2 haplotype is associated with antituberculosis drug-induced maculopapular eruption. Allergy Asthma Immunol Res. 2012 Nov;4(6):362–366.
Bai H, Wu T, Jiao L, Wu Q, Zhao Z, Song J, Liu T, Lv Y, Lu X, Ying B. Association of ABCC Gene Polymorphism With Susceptibility to Antituberculosis Drug–Induced Hepatotoxicity in Western Han Patients With Tuberculosis. J Clin Pharmacol. Blackwell Publishing Inc.; 2020 Mar 1;60(3):361–368. PMID: 31648372.
Manikandan P, Nagini S. Cytochrome P450 Structure, Function and Clinical Significance: A Review. Curr Drug Targets. Bentham Science Publishers Ltd.; 2017 Feb 23;19(1). PMID: 28124606.
Kim SH, Kim SH, Yoon HJ, Shin DH, Park SS, Kim YS, Park JS, Jee YK. NAT2, CYP2C9, CYP2C19, and CYP2E1 genetic polymorphisms in anti-TB drug-induced maculopapular eruption. Eur J Clin Pharmacol [Internet]. Eur J Clin Pharmacol; 2011 Feb [cited 2023 Jun 27];67(2):121–127. Available from: https://pubmed.ncbi.nlm.nih.gov/20941486/ PMID: 20941486.
Wu S, Wang YJ, Tang X, Wang Y, Wu J, Ji G, Zhang M, Chen G, Liu Q, Sandford AJ, He JQ. Genetic Polymorphisms of Glutathione S-Transferase P1 (GSTP1) and the Incidence of Anti-Tuberculosis Drug-Induced Hepatotoxicity. PLoS One [Internet]. PLoS One; 2016 Jun 1 [cited 2023 Jun 27];11(6). Available from: https://pubmed.ncbi.nlm.nih.gov/27281183/ PMID: 27281183.
Zhang M, Wu S quan, He J qing. Are genetic variations in glutathione S-transferases involved in anti-tuberculosis drug-induced liver injury? A meta-analysis. J Clin Pharm Ther. Blackwell Publishing Ltd; 2019 Dec 1;44(6):844–857. PMID: 31378997.
Nanashima K, Mawatari T, Tahara N, Higuchi N, Nakaura A, Inamine T, Kondo S, Yanagihara K, Fukushima K, Suyama N, Kohno S, Tsukamoto K. Genetic variants in antioxidant pathway: risk factors for hepatotoxicity in tuberculosis patients. Tuberculosis (Edinb) [Internet]. Tuberculosis (Edinb); 2012 May [cited 2023 Jun 27];92(3):253–259. Available from: https://pubmed.ncbi.nlm.nih.gov/22341855/ PMID: 22341855.
Li Y, Tang H, Qi H, Shen C, Sun L, Li J, Xu F, Jiao W, Yang X, Shen A. rs1800796 of the IL6 gene is associated with increased risk for anti-tuberculosis drug-induced hepatotoxicity in Chinese Han children. Tuberculosis (Edinb) [Internet]. Tuberculosis (Edinb); 2018 Jul 1 [cited 2023 Jun 27];111:71–77. Available from: https://pubmed.ncbi.nlm.nih.gov/30029918/ PMID: 30029918.
Ramappa V, Aithal GP. Hepatotoxicity Related to Anti-tuberculosis Drugs: Mechanisms and Management. Journal of Clinical and Experimental Hepatology. 2013. p. 37–49.
An HR, Wu XQ, Wang ZY, Zhang JX, Liang Y. NAT2 and CYP2E1 polymorphisms associated with antituberculosis drug-induced hepatotoxicity in Chinese patients. Clin Exp Pharmacol Physiol [Internet]. Clin Exp Pharmacol Physiol; 2012 Jun [cited 2023 Jun 27];39(6):535–543. Available from: https://pubmed.ncbi.nlm.nih.gov/22506592/ PMID: 22506592.
Chelouti H, Khelil M. Arylamine N-acetyltransferase 2 gene polymorphism in an Algerian population. Ann Hum Biol. Taylor and Francis Ltd; 2017 Aug 18;44(6):531–536. PMID: 28347189.
Bose PD, Sarma MP, Medhi S, Das BC, Husain SA, Kar P. Role of polymorphic N-acetyl transferase2 and cytochrome P4502E1 gene in antituberculosis treatment-induced hepatitis. J Gastroenterol Hepatol [Internet]. J Gastroenterol Hepatol; 2011 [cited 2023 Jun 27];26(2):312–318. Available from: https://pubmed.ncbi.nlm.nih.gov/21261721/ PMID: 21261721.
Ben Mahmoud L, Ghozzi H, Kamoun A, Hakim A, Hachicha H, Hammami S, Sahnoun Z, Zalila N, Makni H, Zeghal K. Polymorphism of the N-acetyltransferase 2 gene as a susceptibility risk factor for antituberculosis drug-induced hepatotoxicity in Tunisian patients with tuberculosis. Pathol Biol (Paris) [Internet]. Pathol Biol (Paris); 2012 Oct [cited 2023 Jun 27];60(5):324–330. Available from: https://pubmed.ncbi.nlm.nih.gov/21856096/ PMID: 21856096.
Araujo-Mariz C, Militão de Albuquerque M de FP, Lopes EP, Ximenes RAA, Lacerda HR, Miranda-Filho DB, Lustosa-Martins BB, Pastor AFP, Acioli-Santos B. Hepatotoxicity during TB treatment in people with HIV/AIDS related to NAT2 polymorphisms in Pernambuco, Northeast Brazil. Ann Hepatol. Elsevier Espana S.L.; 2020 Mar 1;19(2):153–160. PMID: 31734174.
Ho HT, Wang TH, Hsiong CH, Perng WC, Wang NC, Huang TY, Jong YJ, Lu PL, Hu OYP. The NAT2 tag SNP rs1495741 correlates with the susceptibility of antituberculosis drug-induced hepatotoxicity. Pharmacogenet Genomics. Lippincott Williams and Wilkins; 2013;23(4):200–207. PMID: 23407048.
Suvichapanich S, Wattanapokayakit S, Mushiroda T, Yanai H, Chuchottawon C, Kantima T, Nedsuwan S, Suwankesawong W, Sonsupap C, Pannarunothai R, Tumpattanakul S, Bamrungram W, Chaiwong A, Mahasirimongkol S, Mameechai S, Panthong W, Klungtes N, Munsoo A, Chauychana U, Maneerat M, Fukunaga K, Omae Y, Tokunaga K. Genomewide Association Study Confirming the Association of NAT2 with Susceptibility to Antituberculosis Drug-Induced Liver Injury in Thai Patients. Antimicrob Agents Chemother [Internet]. Antimicrob Agents Chemother; 2019 [cited 2023 Jun 27];63(8). Available from: https://pubmed.ncbi.nlm.nih.gov/31109976/ PMID: 31109976.
Chan SL, Chua APG, Aminkeng F, Chee CBE, Jin S, Loh M, Gan SH, Wang YT, Brunham LR. Association and clinical utility of NAT2 in the prediction of isoniazid-induced liver injury in Singaporean patients. PLoS One [Internet]. PLoS One; 2017 Oct 1 [cited 2023 Jun 27];12(10). Available from: https://pubmed.ncbi.nlm.nih.gov/29036176/ PMID: 29036176.
Petros Z, Lee MTM, Takahashi A, Zhang Y, Yimer G, Habtewold A, Amogne W, Aderaye G, Schuppe-Koistinen I, Mushiroda T, Makonnen E, Kubo M, Aklillu E. Genome-wide association and replication study of anti-tuberculosis drugs-induced liver toxicity. BMC Genomics. BioMed Central Ltd.; 2016 Sep 26;17(1).
World Health Organization. tb_profiles [Internet]. Geneva, Switzerland: World Health Organization. 2021 [updated 2022; cited 2022 January 13] n.d. Available from: https://worldhealthorg.shinyapps.io/tb_profiles/?_inputs_&entity_type=%22country%22&lan=%22EN%22&iso2=%22TH%22 [Last accessed: 6/27/2023].
Shimizu Y, Dobashi K, Mita Y, et al. DNA microarray genotyping of N-acetyltransferase 2 polymorphism using carbodiimide as the linker for assessment of isoniazid hepatotoxicity. Tuberculosis (Edinb) 2006;86(5):374–381; doi: 10.1016/J.TUBE.2005.09.002.
Cho HJ, Koh WJ, Ryu YJ, et al. Genetic polymorphisms of NAT2 and CYP2E1 associated with antituberculosis drug-induced hepatotoxicity in Korean patients with pulmonary tuberculosis. Tuberculosis (Edinb) 2007;87(6):551–556; doi: 10.1016/J.TUBE.2007.05.012.
Huang YS, Chern H Der, Su WJ, et al. Polymorphism of the N-acetyltransferase 2 gene as a susceptibility risk factor for antituberculosis drug-induced hepatitis. Hepatology 2002;35(4):883–889; doi: 10.1053/jhep.2002.32102.
Lee S-W, Chung LS-C, Huang H-H, et al. NAT2 and CYP2E1 polymorphisms and susceptibility to first-line anti-tuberculosis drug-induced hepatitis. n.d.
Lv X, Tang S, Xia Y, et al. NAT2 genetic polymorphisms and anti-tuberculosis drug-induced hepatotoxicity in Chinese community population. Ann Hepatol 2012;11(5):700–707; doi: 10.1016/S1665-2681(19)31446-2.
Mushiroda T, Yanai H, Yoshiyama T, et al. Development of a prediction system for anti-tuberculosis drug-induced liver injury in Japanese patients. Hum Genome Var 2016;3; doi: 10.1038/HGV.2016.14.
Lu L, Tao B, Wei H, et al. Relevance of NAT2 genotype to anti-tuberculosis drug-induced hepatotoxicity in a Chinese Han population. J Gene Med 2019;21(6); doi: 10.1002/JGM.3096.
Yu YY, Tsao SM, Yang WT, et al. Association of Drug Metabolic Enzyme Genetic Polymorphisms and Adverse Drug Reactions in Patients Receiving Rifapentine and Isoniazid Therapy for Latent Tuberculosis. Int J Environ Res Public Health 2019;17(1); doi: 10.3390/IJERPH17010210.
Headriawan A, Pramono AA, Sukadi A, et al. NAT2 Gene rs1041983 is Associated with Anti-Tuberculosis Drug Induced Hepatotoxicity Among Pediatric Tuberculosis in Bandung, Indonesia. Appl Clin Genet 2021;14:297–303; doi: 10.2147/TACG.S303668.
Yuliwulandari R, Prayuni K, Susilowati RW, et al. NAT2 slow acetylator is associated with anti-tuberculosis drug-induced liver injury severity in indonesian population. Pharmacogenomics 2019;20(18):1303–1310; doi: 10.2217/PGS-2019-0131.
Wattanapokayakit S, Mushiroda T, Yanai H, et al. NAT2 slow acetylator associated with anti-tuberculosis drug-induced liver injury in Thai patients. Int J Tuberc Lung Dis 2016;20(10):1364–1369; doi: 10.5588/IJTLD.15.0310.
Yuliwulandari R, Susilowati RW, Wicaksono BD, et al. NAT2 variants are associated with drug-induced liver injury caused by anti-tuberculosis drugs in Indonesian patients with tuberculosis. J Hum Genet 2016;61(6):533–537; doi: 10.1038/JHG.2016.10.
Gupta VH, Amarapurkar DN, Singh M, et al. Association of N-acetyltransferase 2 and cytochrome P450 2E1 gene polymorphisms with antituberculosis drug-induced hepatotoxicity in Western India. J Gastroenterol Hepatol 2013;28(8):1368–1374; doi: 10.1111/JGH.12194.
Yadav D, Kumar R, Dixit RK, et al. Association of Nat2 Gene Polymorphism with Antitubercular Drug-induced Hepatotoxicity in the Eastern Uttar Pradesh Population. Cureus 2019;11(4); doi: 10.7759/CUREUS.4425.
Rana S V., Sharma SK, Ola RP, et al. N-acetyltransferase 2, cytochrome P4502E1 and glutathione S-transferase genotypes in antitubercular treatment-induced hepatotoxicity in North Indians. J Clin Pharm Ther 2014;39(1):91–96; doi: 10.1111/JCPT.12105.
Sharma SK, Jha BK, Sharma A, et al. Genetic polymorphisms of N-acetyltransferase 2
& susceptibility to antituberculosis drug-induced hepatotoxicity. Indian J Med Res 2016;144(6):924–928; doi: 10.4103/IJMR.IJMR_684_14.
Ben Fredj N, Gam R, Kerkni E, et al. Risk factors of isoniazid-induced hepatotoxicity in Tunisian tuberculosis patients. Pharmacogenomics J 2017;17(4):372–377; doi: 10.1038/TPJ.2016.26.
Possuelo LG, Castelan JA, De Brito TC, et al. Association of slow N-acetyltransferase 2 profile and anti-TB drug-induced hepatotoxicity in patients from Southern Brazil. Eur J Clin Pharmacol 2008;64(7):673–681; doi: 10.1007/S00228-008-0484-8.
Teixeira RLDF, Morato RG, Cabello PH, et al. Genetic polymorphisms of NAT2, CYP2E1 and GST enzymes and the occurrence of antituberculosis drug-induced hepatitis in Brazilian TB patients. Mem Inst Oswaldo Cruz 2011;106(6):716–724; doi: 10.1590/S0074-02762011000600011.
Forestiero FJ, Cecon L, Hirata MH, et al. Relationship of NAT2, CYP2E1 and GSTM1/GSTT1 polymorphisms with mild elevation of liver enzymes in Brazilian individuals under anti-tuberculosis drug therapy. Clin Chim Acta 2013;415:215–219; doi: 10.1016/J.CCA.2012.10.030.
SUN, Qin et al. Genetic Polymorphisms in Antioxidant Enzymes Modulate the Susceptibility of Idiosyncratic Antituberculous Drug?Induced Liver Injury and Treatment Outcomes in Patients with Tuberculosis. Pharmacotherapy: The Journal of Human Pharmacology and Drug Therapy, v. 40, n. 1, p. 4-16, 2020.