Obtenção de atividade antioxidante termoestável a partir da proteína da chia (Salvia hispanica) após hidrólise enzimática

Autores

DOI:

https://doi.org/10.18554/rbcti.v10i00.6797

Palavras-chave:

Proteases, Imobilização, Partículas de Alginato, Proteína Vegetal, Peptídeos Bioativos

Resumo

Proteases apresentam potencial para produzir hidrolisados proteicos com propriedades bioativas. Este estudo teve como objetivo obter hidrolisados de proteína da chia com atividade antioxidante utilizando proteases livres e imobilizadas, caracterizar o hidrolisado mais ativo em diferentes condições de pH e temperatura e avaliar sua estabilidade durante digestão gastrointestinal simulada. A hidrólise enzimática foi realizada com enzimas comerciais (Corolase; pepsina); os hidrolisados foram coletados em 15, 30, 60 e 120 minutos para determinação do grau de hidrólise (GH) e da atividade antioxidante (AA). As enzimas livres promoveram maior extensão de hidrólise, mas o tempo não influenciou a AA, detectável já após 15 minutos. A pepsina imobilizada produziu hidrolisados com maior AA (65,7%), estáveis em pH ácido (70%), com aumento em 30–70 °C (250%) e retenção de 63% após digestão simulada. Incorporado em geleia de maracujá, o hidrolisado elevou a AA em 50%, indicando potencial para aplicação em alimentos funcionais.

Referências

Aljewicz, M., & Cichosz, G. (2015). The effect of probiotic Lactobacillus rhamnosus HN001 on the in vitro availability of minerals from cheese and cheese-like products. LWT-Food Science and Technology, 60(2), 841-847. https://doi.org/10.1016/j.lwt.2014.09.052

Altun, G. D., & Cetinus, S. A. (2007). Immobilization of pepsin on chitosan beads. Food Chemistry, 100(3), 964-971. https://doi.org/10.1016/j.foodchem.2005.11.005

Bougatef, A., Hajji, M., Balti, R., Lassoued, I., Triki-ellouz, Y., & Nasri, M. (2009). Antioxidant and free radical-scavenging activities of smooth hound (Mustelus mustelus) muscle protein hydrolysates obtained by gastrointestinal proteases. Food Chemistry, 114(4), 1198-1205. https://doi.org/10.1016/j.foodchem.2008.10.075

Campos, M. R. S., González, F. P., Guerrero, L. C., & Ancona, D. B. (2013). Angiotensin I-Converting enzyme inhibitory peptides of chia (Salvia hispanica) produced by enzymatic hydrolysis. International journal of food science, 2013(1), 1-8. https://doi.org/10.1155/2013/158482

Coelho, M.S., Soares-freitas, R.A.M., Arêas, J.A.G., Gandra, E. A., & Salas-mellado, M. L. M. (2018). Peptides from Chia Present Antibacterial Activity and Inhibit Cholesterol Synthesis. Plant Foods for Human Nutrition, (73)2, 101–107. https://doi.org/10.1007/s11130-018-0668-z

De Castro, R. J., & Sato, H. H. (2014). Antioxidant activities and functional properties of soy protein isolate hydrolysates obtained using microbial proteases. International Journal of Food Science and Technology, 49(2), 317–328. https://doi.org/10.1111/ijfs.12285

Elias, R. J., Kellerby, S. S., & Decker, E. A. (2008). Antioxidant activity of proteins and peptides. Critical Reviews in Food Science and Nutrition, 48(5), 430-441. https://doi.org/10.1080/10408390701425615

Ferreira, D. B., & Merheb-Dini, C. (2020). Protease encapsulation: effect of particle composition and size on enzymatic reuse. Brazilian Journal of Development, 6(3), 16080-16089. https://doi.org/10.34117/bjdv6n3-469

Guyomarc'h, F., Arvisenet, G., Bouhallab, S., Canon, F., Deutsch, S-M.; Drigon, V., ... & Gagnaire, V. (2021). Mixing milk, egg and plant resources to obtain safe and tasty foods with environmental and health benefits. Trends in Food Science & Technology, 108, 119-132. https://doi.org/10.1016/j.tifs.2020.12.010

Hartree, E.F. (1972). Determination of protein: a modification of the Lowry method that gives a linear photometric response. Analytical Biochemistry, 48(2), 422-427. https://doi.org/10.1016/0003-2697(72)90094-2

Jao, C-L., Huang, S-L., & Hsu, K-C. (2012). Angiotensin I-converting enzyme inhibitory peptides: Inhibition mode, bioavailability, and antihypertensive effects. BioMedicine, 2(4), 130-136. https://doi.org/10.1016/j.biomed.2012.06.005 .

Korhonen, H., & Pihlanto, A. (2006). Bioactive peptides: Production and functionality. International Dairy Journal, 16(9), 945-960. https://doi.org/10.1016/j.idairyj.2005.10.012

Kulczynski, B., Kobus-Cisowska, J., Taczanowski, M., Kmiecik, D., & Gramza-Michatowska, A. (2019). The chemical composition and nutritional value of chia seeds - Current state of knowledge. Nutrients, 11(6), 1-16. https://doi.org/10.3390/nu11061242

Kulkarni, S.G., & Vijayanand P. (2010). Effect of extractions on the quality characteristics of pectin from passion fruit peel. LWT Food science and technology, 43, 1026-1031. https://doi.org/10.1016/j.lwt.2009.11.006.

Lago, E.S, Gomes, E, & Silva, R. (2006.). Production of jambolan (Syzygium cumini Lamarck) jelly: processing, physical-chemical properties and sensory evaluation. Food Science and Technology, 26(4), 847-852. https://doi.org/10.1590/S0101-20612006000400021.

Marineli, R. S., Moraes, E. A., Lenquiste, S. A., Godoy, A. T., Eberlin, M. N., & Maróstica Jr., M. R. Chemical characterization and antioxidant potencial of chilen chia seeds and oil (Salvia hispanica). LWT Food science and technology, 59(2), 1304-1310. https://doi.org/10.1016/j.lwt.2014.04.014.

Mazloomi, S. N., Mora, L., Aristoy, M-C., Mahoonak, A. S., Ghorbani, M., Houshmand, G., ... & Toldrá, F. (2020). Impact of simulated gastrointestinal digestion on the biological activity of an alcalase hydrolysate of Orange Seed (Siavaraze, Citrus sinensis) by-Products. Foods, 9(9), 1-22. https://doi.org/10.3390/foods9091217

Basso, A., & Serban S. (2019). Industrial applications of immobilized enzymes—A review. Molecular Catalysis, 479, 1-20. https://doi.org/10.1016/j.mcat.2019.110607

Nascimento, J. C., Lage, L. F. O., Camargos, C. R. D., Amaral, J. C., Costa, L. M., Sousa, A. N., ... & Oliveira, S. Q. (2011). Determinação da atividade antioxidante pelo método DPPH e doseamento de flavonóides totais em extratos de folhas da Bauhinia variegata L. Revista Brasileira de Farmácia, 92(4), 327-332.

Orona-Tamayo, D., Valverde, M. E., Nieto-Rendón, B., Paredes-López, O. (2015). Inhibitory activity of chia (Salvia hispanica L.) protein fractions against angiotensin I-converting enzyme and antioxidant capacity. LWT Food Science and Technology, 64(1), 236-242. https://doi.org/10.1016/j.lwt.2015.05.033

Pablo-Osorio, B. S., Mojica, L., & Urías-Silvas, J. E. (2019). Chia Seed (Salvia hispanica L.) Pepsin Hydrolysates Inhibit Angiotensin-Converting Enzyme by Interacting with its Catalytic Site. Journal of Food Science, 84(5), 1170-1179. https://doi.org/10.1111/1750-3841.14503

Phelan, M., Aherne-Bruce, A., O’sullivan, D., Fitzgerald, R. J., & O’brien, N. M. (2009). Potential bioactive effects of casein hydrolysates on human cultured cells. International Dairy Journal, 19(5), 279-285. https://doi.org/10.1016/j.idairyj.2008.12.004

Schellman, J. A. (1997). Temperature, Stability, and the Hydrophobic Interaction. Biophysical Journal, 73(6), 2969-2964. https://doi.org/10.1016/S0006-3495(97)78324-3

Segura-Campos, M. R., Salazar-Vega, I. M., Chel-Guerrero, L. A., & Betancur-Ancona, D. A. (2013). Biological potential of chia (Salvia hispanica L.) protein hydrolysates and their incorporation into functional foods. LWT Food Science and Technology, 50(2), 723-731. https://doi.org/10.1016/j.lwt.2012.07.017

Sgarbieri, V. C. (2004). Propriedades fisiológicas-funcionais das proteínas do soro de leite. Revista de Nutrição, 17(4), 397-409. https://doi.org/10.1590/S1415-52732004000400001

Villanueva-Lazo, A., Paz, S. M., Rodriguez-Martin, N.M., Millan, F., Carrera C., Pedroche, J. J. ... & Millan-linares, M. C. (2021). Antihypertensive and Antioxidant Activity of Chia Protein Techno-Functional Extensive Hydrolysates. Foods, 10(2297), 1-14. https://doi.org/10.3390/foods10102297

Villanueva-Lazo, A., Paz, S. M., Grao-Cruces, E., Pedroche, J., Toscano, R., Millan, F. ... & Millan-Linares, M. C. (2022) Antioxidant and Immunomodulatory Properties of Chia Protein Hydrolysates in Primary Human Monocyte– Macrophage Plasticity. Foods, 11(5), 1-13. https://doi.org/10.3390/foods11050623

Zeraik, M.L, Pereira, C. A. M., Zuin, V. G., & Yariwake, J. H. (2010). Passion Fruit: a functional food? Brazilian Journal of Pharmacognosy, 20(3), 459-471. https://doi.org/10.1590/S0102-695X2010000300026

Downloads

Publicado

30-12-2025

Edição

Seção

Artigos

Como Citar

CAMILA PIAI ROSSI; PAULO HENRIQUE MARIANO MARFIL; MERHEB DINI, Carolina. Obtenção de atividade antioxidante termoestável a partir da proteína da chia (Salvia hispanica) após hidrólise enzimática. Revista Brasileira de Ciência, Tecnologia e Inovação, [S. l.], v. 10, n. 00, p. e025003, 2025. DOI: 10.18554/rbcti.v10i00.6797. Disponível em: https://seer.uftm.edu.br/revistaeletronica/index.php/rbcti/article/view/6797. Acesso em: 8 jan. 2026.