Production of thermostable antioxidant activity from chia (Salvia hispanica) protein after enzymatic hydrolysis

Authors

DOI:

https://doi.org/10.18554/rbcti.v10i00.6797

Keywords:

Proteases, Immobilization, Alginate Beads, Vegetable Protein, Bioactive Peptides

Abstract

Proteases are promising tools for producing protein hydrolysates with bioactive properties. This study aimed to obtain chia protein hydrolysates with antioxidant activity using free and immobilized proteases, characterize the most active hydrolysate under different pH and temperature conditions, and evaluate its stability during simulated gastrointestinal digestion. Enzymatic hydrolysis was performed with commercial enzymes (Corolase; pepsin), and hydrolysates were collected at 15, 30, 60, and 120 min to assess degree of hydrolysis (DH) and antioxidant activity (AA). Free enzymes hydrolyzed chia proteins more extensively, while hydrolysis time did not affect AA, which was detectable after 15 min. Immobilized pepsin produced hydrolysates with the highest AA (65.7%). This activity was stable at acidic pH (70%), increased at 30–70 °C (250%), and retained 63% after simulated digestion. The hydrolysate was incorporated into passion fruit jelly, enhancing AA by 50%. Results highlight chia hydrolysates as promising ingredients for functional foods.

References

Aljewicz, M., & Cichosz, G. (2015). The effect of probiotic Lactobacillus rhamnosus HN001 on the in vitro availability of minerals from cheese and cheese-like products. LWT-Food Science and Technology, 60(2), 841-847. https://doi.org/10.1016/j.lwt.2014.09.052

Altun, G. D., & Cetinus, S. A. (2007). Immobilization of pepsin on chitosan beads. Food Chemistry, 100(3), 964-971. https://doi.org/10.1016/j.foodchem.2005.11.005

Bougatef, A., Hajji, M., Balti, R., Lassoued, I., Triki-ellouz, Y., & Nasri, M. (2009). Antioxidant and free radical-scavenging activities of smooth hound (Mustelus mustelus) muscle protein hydrolysates obtained by gastrointestinal proteases. Food Chemistry, 114(4), 1198-1205. https://doi.org/10.1016/j.foodchem.2008.10.075

Campos, M. R. S., González, F. P., Guerrero, L. C., & Ancona, D. B. (2013). Angiotensin I-Converting enzyme inhibitory peptides of chia (Salvia hispanica) produced by enzymatic hydrolysis. International journal of food science, 2013(1), 1-8. https://doi.org/10.1155/2013/158482

Coelho, M.S., Soares-freitas, R.A.M., Arêas, J.A.G., Gandra, E. A., & Salas-mellado, M. L. M. (2018). Peptides from Chia Present Antibacterial Activity and Inhibit Cholesterol Synthesis. Plant Foods for Human Nutrition, (73)2, 101–107. https://doi.org/10.1007/s11130-018-0668-z

De Castro, R. J., & Sato, H. H. (2014). Antioxidant activities and functional properties of soy protein isolate hydrolysates obtained using microbial proteases. International Journal of Food Science and Technology, 49(2), 317–328. https://doi.org/10.1111/ijfs.12285

Elias, R. J., Kellerby, S. S., & Decker, E. A. (2008). Antioxidant activity of proteins and peptides. Critical Reviews in Food Science and Nutrition, 48(5), 430-441. https://doi.org/10.1080/10408390701425615

Ferreira, D. B., & Merheb-Dini, C. (2020). Protease encapsulation: effect of particle composition and size on enzymatic reuse. Brazilian Journal of Development, 6(3), 16080-16089. https://doi.org/10.34117/bjdv6n3-469

Guyomarc'h, F., Arvisenet, G., Bouhallab, S., Canon, F., Deutsch, S-M.; Drigon, V., ... & Gagnaire, V. (2021). Mixing milk, egg and plant resources to obtain safe and tasty foods with environmental and health benefits. Trends in Food Science & Technology, 108, 119-132. https://doi.org/10.1016/j.tifs.2020.12.010

Hartree, E.F. (1972). Determination of protein: a modification of the Lowry method that gives a linear photometric response. Analytical Biochemistry, 48(2), 422-427. https://doi.org/10.1016/0003-2697(72)90094-2

Jao, C-L., Huang, S-L., & Hsu, K-C. (2012). Angiotensin I-converting enzyme inhibitory peptides: Inhibition mode, bioavailability, and antihypertensive effects. BioMedicine, 2(4), 130-136. https://doi.org/10.1016/j.biomed.2012.06.005 .

Korhonen, H., & Pihlanto, A. (2006). Bioactive peptides: Production and functionality. International Dairy Journal, 16(9), 945-960. https://doi.org/10.1016/j.idairyj.2005.10.012

Kulczynski, B., Kobus-Cisowska, J., Taczanowski, M., Kmiecik, D., & Gramza-Michatowska, A. (2019). The chemical composition and nutritional value of chia seeds - Current state of knowledge. Nutrients, 11(6), 1-16. https://doi.org/10.3390/nu11061242

Kulkarni, S.G., & Vijayanand P. (2010). Effect of extractions on the quality characteristics of pectin from passion fruit peel. LWT Food science and technology, 43, 1026-1031. https://doi.org/10.1016/j.lwt.2009.11.006.

Lago, E.S, Gomes, E, & Silva, R. (2006.). Production of jambolan (Syzygium cumini Lamarck) jelly: processing, physical-chemical properties and sensory evaluation. Food Science and Technology, 26(4), 847-852. https://doi.org/10.1590/S0101-20612006000400021.

Marineli, R. S., Moraes, E. A., Lenquiste, S. A., Godoy, A. T., Eberlin, M. N., & Maróstica Jr., M. R. Chemical characterization and antioxidant potencial of chilen chia seeds and oil (Salvia hispanica). LWT Food science and technology, 59(2), 1304-1310. https://doi.org/10.1016/j.lwt.2014.04.014.

Mazloomi, S. N., Mora, L., Aristoy, M-C., Mahoonak, A. S., Ghorbani, M., Houshmand, G., ... & Toldrá, F. (2020). Impact of simulated gastrointestinal digestion on the biological activity of an alcalase hydrolysate of Orange Seed (Siavaraze, Citrus sinensis) by-Products. Foods, 9(9), 1-22. https://doi.org/10.3390/foods9091217

Basso, A., & Serban S. (2019). Industrial applications of immobilized enzymes—A review. Molecular Catalysis, 479, 1-20. https://doi.org/10.1016/j.mcat.2019.110607

Nascimento, J. C., Lage, L. F. O., Camargos, C. R. D., Amaral, J. C., Costa, L. M., Sousa, A. N., ... & Oliveira, S. Q. (2011). Determinação da atividade antioxidante pelo método DPPH e doseamento de flavonóides totais em extratos de folhas da Bauhinia variegata L. Revista Brasileira de Farmácia, 92(4), 327-332.

Orona-Tamayo, D., Valverde, M. E., Nieto-Rendón, B., Paredes-López, O. (2015). Inhibitory activity of chia (Salvia hispanica L.) protein fractions against angiotensin I-converting enzyme and antioxidant capacity. LWT Food Science and Technology, 64(1), 236-242. https://doi.org/10.1016/j.lwt.2015.05.033

Pablo-Osorio, B. S., Mojica, L., & Urías-Silvas, J. E. (2019). Chia Seed (Salvia hispanica L.) Pepsin Hydrolysates Inhibit Angiotensin-Converting Enzyme by Interacting with its Catalytic Site. Journal of Food Science, 84(5), 1170-1179. https://doi.org/10.1111/1750-3841.14503

Phelan, M., Aherne-Bruce, A., O’sullivan, D., Fitzgerald, R. J., & O’brien, N. M. (2009). Potential bioactive effects of casein hydrolysates on human cultured cells. International Dairy Journal, 19(5), 279-285. https://doi.org/10.1016/j.idairyj.2008.12.004

Schellman, J. A. (1997). Temperature, Stability, and the Hydrophobic Interaction. Biophysical Journal, 73(6), 2969-2964. https://doi.org/10.1016/S0006-3495(97)78324-3

Segura-Campos, M. R., Salazar-Vega, I. M., Chel-Guerrero, L. A., & Betancur-Ancona, D. A. (2013). Biological potential of chia (Salvia hispanica L.) protein hydrolysates and their incorporation into functional foods. LWT Food Science and Technology, 50(2), 723-731. https://doi.org/10.1016/j.lwt.2012.07.017

Sgarbieri, V. C. (2004). Propriedades fisiológicas-funcionais das proteínas do soro de leite. Revista de Nutrição, 17(4), 397-409. https://doi.org/10.1590/S1415-52732004000400001

Villanueva-Lazo, A., Paz, S. M., Rodriguez-Martin, N.M., Millan, F., Carrera C., Pedroche, J. J. ... & Millan-linares, M. C. (2021). Antihypertensive and Antioxidant Activity of Chia Protein Techno-Functional Extensive Hydrolysates. Foods, 10(2297), 1-14. https://doi.org/10.3390/foods10102297

Villanueva-Lazo, A., Paz, S. M., Grao-Cruces, E., Pedroche, J., Toscano, R., Millan, F. ... & Millan-Linares, M. C. (2022) Antioxidant and Immunomodulatory Properties of Chia Protein Hydrolysates in Primary Human Monocyte– Macrophage Plasticity. Foods, 11(5), 1-13. https://doi.org/10.3390/foods11050623

Zeraik, M.L, Pereira, C. A. M., Zuin, V. G., & Yariwake, J. H. (2010). Passion Fruit: a functional food? Brazilian Journal of Pharmacognosy, 20(3), 459-471. https://doi.org/10.1590/S0102-695X2010000300026

Downloads

Published

2025-12-30

Issue

Section

Artigos

How to Cite

CAMILA PIAI ROSSI; PAULO HENRIQUE MARIANO MARFIL; MERHEB DINI, Carolina. Production of thermostable antioxidant activity from chia (Salvia hispanica) protein after enzymatic hydrolysis. BRAZILIAN JOURNAL OF SCIENCE, TECHNOLOGY AND INNOVATION, [S. l.], v. 10, n. 00, p. e025003, 2025. DOI: 10.18554/rbcti.v10i00.6797. Disponível em: https://seer.uftm.edu.br/revistaeletronica/index.php/rbcti/article/view/6797. Acesso em: 9 jan. 2026.