Tecnologia de spray dryer e microencapsulação – uma breve revisão
DOI:
https://doi.org/10.18554/rbcti.v10i00.6826Palavras-chave:
Transição vítrea, Agentes encapsulantes, Parâmetros de processoResumo
A microencapsulação consiste em revestir substâncias por um agente encapsulante, resultando em pequenas partículas, sendo o spray dryer uma das tecnologias empregadas. O presente trabalho teve como objetivo revisar o processo de secagem por atomização via spray dryer, destacando os principais parâmetros operacionais e suas correlações com as características do produto. O levantamento bibliográfico foi realizado no Google Scholar, utilizando palavras-chave como spray dryer, microencapsulação, agentes encapsulantes, transição vítrea, entre outras. Foram selecionadas obras que abordassem os parâmetros do processo e seus efeitos no produto. Observou-se que variáveis como temperatura, pressão, vazão e características do fluido de alimentação (viscosidade, teor de sólidos e temperatura de transição vítrea) influenciam diretamente na qualidade e estabilidade do pó. Problemas como stickiness que é a aderência na câmara, e Caking, fenômeno que pode ocorrer durante o armazenamento por influência de fatores como umidade, temperatura, pressão e forças eletrostáticas das partículas, podendo evoluir para liquefação do produto. Conclui-se que conhecer o material a ser atomizado é essencial para definir os parâmetros, visando a eficiência da microencapsulação.
Referências
Adhikari, B., Howes, T., Bhandari, B., & Truong, V. (2001). Stickiness in foods: a review of mechanisms and test methods. International Journal of Food Properties, 4(1), 1-33.
Aguilera, J., del Valle, J., & Karel, M. (1995). Caking phenomena in amorphous food powders. Trends in Food Science & Technology, 6(5), 149-155.
Ali, M., Mahmud, T., Heggs, P. J., Ghadiri, M., Bayly, A., Ahmadian, H., & Martin de Juan, L. (2017). CFD modeling of a pilot-scale countercurrent spray drying tower for the manufacture of detergent powder. Drying Technology, 35(3), 281-299. https://doi.org/10.1080/07373937.2016.1163576
Alpizar-Reyes, E., Román-Guerrero, A., Gallardo-Rivera, R., Varela-Guerrero, V., Cruz-Olivares, J., & Perez-Alonso, C. (2018). Rheological properties of tamarind (Tamarindus indica L.) seed mucilage obtained by spray-drying as a novel source of hydrocolloid. International Journal of Biological Macromolecules, 107, 817-824. https://doi.org/10.1016/j.ijbiomac.2017.09.048
Anandharamakrishnan, C., & Ishwarya, S. P. (2015). Spray drying techniques for food ingredient encapsulation. John Wiley & Sons.
Barbosa-Cánovas, G. V., Ortega-Rivas, E., Juliano, P., & Yan, H. (2005). Food powders: physical properties, processing, and functionality. Springer.
Bazaria, B., & Kumar, P. (2018). Optimization of spray drying parameters for beetroot juice powder using response surface methodology (RSM). Journal of the Saudi society of agricultural sciences, 17(4), 408-415. https://doi.org/10.1016/j.jssas.2016.09.007
Both, E., Boom, R., & Schutyser, M. (2020). Particle morphology and powder properties during spray drying of maltodextrin and whey protein mixtures. Powder Technology, 363, 519-524.
Coimbra, P. P. S. (2020). Extração hidroalcoólica, extração assistida por ultrassom e encapsulamento de bioativos de resíduos vegetais Universidade Federal do Estado do Rio de Janeiro]. RJ.
Costa, S. S., Machado, B. A. S., Martin, A. R., Bagnara, F., Ragadalli, S. A., & Alves, A. R. C. (2015). Drying by spray drying in the food industry: Micro-encapsulation, process parameters and main carriers used. African Journal of Food Science, 9(9), 462-470. https://doi.org/10.5897/AJFS2015.1279
Fitzpatrick, J., Descamps, N., O'meara, K., Jones, C., Walsh, D., & Spitere, M. (2010). Comparing the caking behaviours of skim milk powder, amorphous maltodextrin and crystalline common salt. Powder Technology, 204(1), 131-137. https://doi.org/10.1016/j.powtec.2010.07.029
Griesang, J. I., Rosso, A. C., Kuzniewski, F. C., Bertoldo, V. C., dos Santos Oliveira, M., & Severo, J. (2019). Microencapsulação de compostos bioativos em alimentos. Boletim Técnico-Científico, 5(2). https://doi.org/10.26669/2359-2664.2019.227
Islam Shishir, M. R., Taip, F. S., Aziz, N. A., Talib, R. A., & Hossain Sarker, M. S. (2016). Optimization of spray drying parameters for pink guava powder using RSM. Food science and biotechnology, 25(2), 461-468. https://doi.org/10.1007/s10068-016-0064-0
Jedlińska, A., Samborska, K., Wieczorek, A., Wiktor, A., Ostrowska-Ligęza, E., Jamróz, W., Skwarczyńska-Maj, K., Kiełczewski, D., Błażowski, Ł., & Tułodziecki, M. (2019). The application of dehumidified air in rapeseed and honeydew honey spray drying-Process performance and powders properties considerations. Journal of Food Engineering, 245, 80-87. https://doi.org/10.1016/j.jfoodeng.2018.10.017
Juliano, P., & Barbosa-Cánovas, G. V. (2010). Food powders flowability characterization: theory, methods, and applications. Annual review of food science and technology, 1(1), 211-239. https://doi.org/10.1146/annurev.food.102308.124155
Keshani, S., Daud, W. R. W., Nourouzi, M., Namvar, F., & Ghasemi, M. (2015). Spray drying: An overview on wall deposition, process and modeling. Journal of Food Engineering, 146, 152-162. https://doi.org/10.1016/j.jfoodeng.2014.09.004
Lechanteur, A., & Evrard, B. (2020). Influence of composition and spray-drying process parameters on carrier-free DPI properties and behaviors in the lung: A review. Pharmaceutics, 12(1), 55. https://doi.org/10.3390/pharmaceutics12010055
Lintingre, E., Lequeux, F., Talini, L., & Tsapis, N. (2016). Control of particle morphology in the spray drying of colloidal suspensions. Soft Matter, 12(36), 7435-7444. https://doi.org/10.1039/C6SM01314G
Lisboa, H. M., Duarte, M. E., & Cavalcanti-Mata, M. E. (2018). Modeling of food drying processes in industrial spray dryers. Food and Bioproducts Processing, 107, 49-60. https://doi.org/10.1016/j.fbp.2017.09.006
Mohammed, N. K., Tan, C. P., Manap, Y. A., Muhialdin, B. J., & Hussin, A. S. M. (2020). Spray drying for the encapsulation of oils—A review. Molecules, 25(17), 3873. https://doi.org/10.3390/molecules25173873
Moser, P., Telis, V. R. N., de Andrade Neves, N., García-Romero, E., Gómez-Alonso, S., & Hermosín-Gutiérrez, I. (2017). Storage stability of phenolic compounds in powdered BRS Violeta grape juice microencapsulated with protein and maltodextrin blends. Food chemistry, 214, 308-318. https://doi.org/10.1016/j.foodchem.2016.07.081
Mudalip, S. A., Khatiman, M., Hashim, N., Man, R. C., & Arshad, Z. (2021). A short review on encapsulation of bioactive compounds using different drying techniques. Materials Today: Proceedings, 42, 288-296.
Mujumdar, A. S. (2014). Handbook of Industrial Drying.
Muzaffar, K., Nayik, G. A., & Kumar, P. (2015). Stickiness problem associated with spray drying of sugar and acid rich foods: a mini review. Journal of Nutrition & Food Sciences(S12), 1. https://doi.org/10.4172/2155-9600.1000S12003
Palzer, S. (2005). The effect of glass transition on the desired and undesired agglomeration of amorphous food powders. Chemical Engineering Science, 60(14), 3959-3968. https://doi.org/10.1016/j.ces.2005.02.015
Pignatello, R., & Musumeci, T. (2018). Biomaterials: Physics and Chemistry-New Edition. BoD–Books on Demand.
Piñón-Balderrama, C. I., Leyva-Porras, C., Terán-Figueroa, Y., Espinosa-Solís, V., Álvarez-Salas, C., & Saavedra-Leos, M. Z. (2020). Encapsulation of active ingredients in food industry by spray-drying and nano spray-drying technologies. Processes, 8(8), 889. https://doi.org/10.3390/pr8080889
Poozesh, S., & Bilgili, E. (2019). Scale-up of pharmaceutical spray drying using scale-up rules: A review. International Journal of Pharmaceutics, 562, 271-292. https://doi.org/10.1016/j.ijpharm.2019.03.047
Rezvankhah, A., Emam-Djomeh, Z., & Askari, G. (2020). Encapsulation and delivery of bioactive compounds using spray and freeze-drying techniques: A review. Drying Technology, 38(1-2), 235-258.
Rosa, E., Tsukada, M., & Freitas, L. (2006). Secagem por atomização na indústria alimentícia: fundamentos e aplicações. Jornada Científica da Fazu/Faculdades Associadas de Uberaba, 5.
Santamaria-Echart, A., Fernandes, I. P., Silva, S. C., Rezende, S. C., Colucci, G., Dias, M. M., & Barreiro, M. F. (2021). New trends in natural emulsifiers and emulsion technology for the food industry. In Natural food additives. IntechOpen. https://doi.org/10.5772/intechopen.99892
Santos, D., Maurício, A. C., Sencadas, V., Santos, J. D., Fernandes, M. H., & Gomes, P. S. (2018). Spray drying: an overview. Biomaterials-physics and chemistry-new edition, 9-35.
Selvamuthukumaran, M., Tranchant, C., & Shi, J. (2019). Spraying DryingConcept, Application and Its Recent Advances in Food Processing.
Shrestha, A. K., Ua-Arak, T., Adhikari, B. P., Howes, T., & Bhandari, B. R. (2007). Glass transition behavior of spray dried orange juice powder measured by differential scanning calorimetry (DSC) and thermal mechanical compression test (TMCT). International Journal of Food Properties, 10(3), 661-673. https://doi.org/10.1080/10942910601109218
Silalai, N., & Roos, Y. H. (2011). Mechanical α‐relaxations and stickiness of milk solids/maltodextrin systems around glass transition. Journal of the Science of Food and Agriculture, 91(14), 2529-2536. https://doi.org/10.1002/jsfa.4379
Silva, T. M. d., Rodrigues, L. Z., Nunes, G. L., Codevilla, C. F., Silva, C. B. d., & Menezes, C. R. d. (2015). Encapsulação de compostos bioativos por coacervação complexa. Ciência e Natura, 37(5), 56-64. https://doi.org/10.5902/2179460X19715
Tolve, R., Galgano, F., Caruso, M. C., Tchuenbou-Magaia, F. L., Condelli, N., Favati, F., & Zhang, Z. (2016). Encapsulation of health-promoting ingredients: applications in foodstuffs. International journal of food sciences and nutrition, 67(8), 888-918. https://doi.org/10.1080/09637486.2016.1205552
Tontul, I., & Topuz, A. (2017). Spray-drying of fruit and vegetable juices: Effect of drying conditions on the product yield and physical properties. Trends in Food Science & Technology, 63, 91-102. https://doi.org/10.1016/j.tifs.2017.03.009
Verma, A., & Singh, S. V. (2015). Spray drying of fruit and vegetable juices—a review. Critical reviews in food science and nutrition, 55(5), 701-719. https://doi.org/10.1080/10408398.2012.672939
Villegas Santiago, J., Gómez Navarro, F., Domínguez Niño, A., García Alvarado, M. A., Salgado Cervantes, M. A., & Luna Solano, G. (2020). Effect of spray-drying conditions on moisture content and particle size of coffee extract in a prototype dryer. https://doi.org/10.24275/rmiq/Proc767
Wawrzyniak, P., Jaskulski, M., Piatkowski, M., Sobulska, M., Zbicinski, I., & Egan, S. (2020). Experimental detergent drying analysis in a counter-current spray dryer with swirling air flow. Drying Technology. https://doi.org/10.1080/07373937.2019.1626878
Woo, M. W., Lee, M. G., Shakiba, S., & Mansouri, S. (2017). Controlling in situ crystallization of pharmaceutical particles within the spray dryer. Expert opinion on drug delivery, 14(11), 1315-1324. https://doi.org/10.1080/17425247.2017.1269077
Zbicinski, I., Ciesielski, K., & Ge, B. (2022). Mechanism of particle agglomeration for single and multi-nozzle atomization in spray drying: A review. Processes, 10(4), 727. https://doi.org/10.3390/pr10040727
Zotarelli, M. F. (2014). Produção e caracterização de manga desidratada em pó por diferentes processos de secagem Universidade Federal de Santa Catarina, SC.
Downloads
Publicado
Edição
Seção
Licença
Copyright (c) 2025 Igor Kohn Lanciote Concilio, Mário Zocatelli, Beatriz Mello

Este trabalho está licenciado sob uma licença Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.