Tecnologia de spray dryer e microencapsulação – uma breve revisão

Autores

DOI:

https://doi.org/10.18554/rbcti.v10i00.6826

Palavras-chave:

Transição vítrea, Agentes encapsulantes, Parâmetros de processo

Resumo

A microencapsulação consiste em revestir substâncias por um agente encapsulante, resultando em pequenas partículas, sendo o spray dryer uma das tecnologias empregadas. O presente trabalho teve como objetivo revisar o processo de secagem por atomização via spray dryer, destacando os principais parâmetros operacionais e suas correlações com as características do produto. O levantamento bibliográfico foi realizado no Google Scholar, utilizando palavras-chave como spray dryer, microencapsulação, agentes encapsulantes, transição vítrea, entre outras. Foram selecionadas obras que abordassem os parâmetros do processo e seus efeitos no produto. Observou-se que variáveis como temperatura, pressão, vazão e características do fluido de alimentação (viscosidade, teor de sólidos e temperatura de transição vítrea) influenciam diretamente na qualidade e estabilidade do pó. Problemas como stickiness que é a aderência na câmara, e Caking, fenômeno que pode ocorrer durante o armazenamento por influência de fatores como umidade, temperatura, pressão e forças eletrostáticas das partículas, podendo evoluir para liquefação do produto. Conclui-se que conhecer o material a ser atomizado é essencial para definir os parâmetros, visando a eficiência da microencapsulação.

Referências

Adhikari, B., Howes, T., Bhandari, B., & Truong, V. (2001). Stickiness in foods: a review of mechanisms and test methods. International Journal of Food Properties, 4(1), 1-33.

Aguilera, J., del Valle, J., & Karel, M. (1995). Caking phenomena in amorphous food powders. Trends in Food Science & Technology, 6(5), 149-155.

Ali, M., Mahmud, T., Heggs, P. J., Ghadiri, M., Bayly, A., Ahmadian, H., & Martin de Juan, L. (2017). CFD modeling of a pilot-scale countercurrent spray drying tower for the manufacture of detergent powder. Drying Technology, 35(3), 281-299. https://doi.org/10.1080/07373937.2016.1163576

Alpizar-Reyes, E., Román-Guerrero, A., Gallardo-Rivera, R., Varela-Guerrero, V., Cruz-Olivares, J., & Perez-Alonso, C. (2018). Rheological properties of tamarind (Tamarindus indica L.) seed mucilage obtained by spray-drying as a novel source of hydrocolloid. International Journal of Biological Macromolecules, 107, 817-824. https://doi.org/10.1016/j.ijbiomac.2017.09.048

Anandharamakrishnan, C., & Ishwarya, S. P. (2015). Spray drying techniques for food ingredient encapsulation. John Wiley & Sons.

Barbosa-Cánovas, G. V., Ortega-Rivas, E., Juliano, P., & Yan, H. (2005). Food powders: physical properties, processing, and functionality. Springer.

Bazaria, B., & Kumar, P. (2018). Optimization of spray drying parameters for beetroot juice powder using response surface methodology (RSM). Journal of the Saudi society of agricultural sciences, 17(4), 408-415. https://doi.org/10.1016/j.jssas.2016.09.007

Both, E., Boom, R., & Schutyser, M. (2020). Particle morphology and powder properties during spray drying of maltodextrin and whey protein mixtures. Powder Technology, 363, 519-524.

Coimbra, P. P. S. (2020). Extração hidroalcoólica, extração assistida por ultrassom e encapsulamento de bioativos de resíduos vegetais Universidade Federal do Estado do Rio de Janeiro]. RJ.

Costa, S. S., Machado, B. A. S., Martin, A. R., Bagnara, F., Ragadalli, S. A., & Alves, A. R. C. (2015). Drying by spray drying in the food industry: Micro-encapsulation, process parameters and main carriers used. African Journal of Food Science, 9(9), 462-470. https://doi.org/10.5897/AJFS2015.1279

Fitzpatrick, J., Descamps, N., O'meara, K., Jones, C., Walsh, D., & Spitere, M. (2010). Comparing the caking behaviours of skim milk powder, amorphous maltodextrin and crystalline common salt. Powder Technology, 204(1), 131-137. https://doi.org/10.1016/j.powtec.2010.07.029

Griesang, J. I., Rosso, A. C., Kuzniewski, F. C., Bertoldo, V. C., dos Santos Oliveira, M., & Severo, J. (2019). Microencapsulação de compostos bioativos em alimentos. Boletim Técnico-Científico, 5(2). https://doi.org/10.26669/2359-2664.2019.227

Islam Shishir, M. R., Taip, F. S., Aziz, N. A., Talib, R. A., & Hossain Sarker, M. S. (2016). Optimization of spray drying parameters for pink guava powder using RSM. Food science and biotechnology, 25(2), 461-468. https://doi.org/10.1007/s10068-016-0064-0

Jedlińska, A., Samborska, K., Wieczorek, A., Wiktor, A., Ostrowska-Ligęza, E., Jamróz, W., Skwarczyńska-Maj, K., Kiełczewski, D., Błażowski, Ł., & Tułodziecki, M. (2019). The application of dehumidified air in rapeseed and honeydew honey spray drying-Process performance and powders properties considerations. Journal of Food Engineering, 245, 80-87. https://doi.org/10.1016/j.jfoodeng.2018.10.017

Juliano, P., & Barbosa-Cánovas, G. V. (2010). Food powders flowability characterization: theory, methods, and applications. Annual review of food science and technology, 1(1), 211-239. https://doi.org/10.1146/annurev.food.102308.124155

Keshani, S., Daud, W. R. W., Nourouzi, M., Namvar, F., & Ghasemi, M. (2015). Spray drying: An overview on wall deposition, process and modeling. Journal of Food Engineering, 146, 152-162. https://doi.org/10.1016/j.jfoodeng.2014.09.004

Lechanteur, A., & Evrard, B. (2020). Influence of composition and spray-drying process parameters on carrier-free DPI properties and behaviors in the lung: A review. Pharmaceutics, 12(1), 55. https://doi.org/10.3390/pharmaceutics12010055

Lintingre, E., Lequeux, F., Talini, L., & Tsapis, N. (2016). Control of particle morphology in the spray drying of colloidal suspensions. Soft Matter, 12(36), 7435-7444. https://doi.org/10.1039/C6SM01314G

Lisboa, H. M., Duarte, M. E., & Cavalcanti-Mata, M. E. (2018). Modeling of food drying processes in industrial spray dryers. Food and Bioproducts Processing, 107, 49-60. https://doi.org/10.1016/j.fbp.2017.09.006

Mohammed, N. K., Tan, C. P., Manap, Y. A., Muhialdin, B. J., & Hussin, A. S. M. (2020). Spray drying for the encapsulation of oils—A review. Molecules, 25(17), 3873. https://doi.org/10.3390/molecules25173873

Moser, P., Telis, V. R. N., de Andrade Neves, N., García-Romero, E., Gómez-Alonso, S., & Hermosín-Gutiérrez, I. (2017). Storage stability of phenolic compounds in powdered BRS Violeta grape juice microencapsulated with protein and maltodextrin blends. Food chemistry, 214, 308-318. https://doi.org/10.1016/j.foodchem.2016.07.081

Mudalip, S. A., Khatiman, M., Hashim, N., Man, R. C., & Arshad, Z. (2021). A short review on encapsulation of bioactive compounds using different drying techniques. Materials Today: Proceedings, 42, 288-296.

Mujumdar, A. S. (2014). Handbook of Industrial Drying.

Muzaffar, K., Nayik, G. A., & Kumar, P. (2015). Stickiness problem associated with spray drying of sugar and acid rich foods: a mini review. Journal of Nutrition & Food Sciences(S12), 1. https://doi.org/10.4172/2155-9600.1000S12003

Palzer, S. (2005). The effect of glass transition on the desired and undesired agglomeration of amorphous food powders. Chemical Engineering Science, 60(14), 3959-3968. https://doi.org/10.1016/j.ces.2005.02.015

Pignatello, R., & Musumeci, T. (2018). Biomaterials: Physics and Chemistry-New Edition. BoD–Books on Demand.

Piñón-Balderrama, C. I., Leyva-Porras, C., Terán-Figueroa, Y., Espinosa-Solís, V., Álvarez-Salas, C., & Saavedra-Leos, M. Z. (2020). Encapsulation of active ingredients in food industry by spray-drying and nano spray-drying technologies. Processes, 8(8), 889. https://doi.org/10.3390/pr8080889

Poozesh, S., & Bilgili, E. (2019). Scale-up of pharmaceutical spray drying using scale-up rules: A review. International Journal of Pharmaceutics, 562, 271-292. https://doi.org/10.1016/j.ijpharm.2019.03.047

Rezvankhah, A., Emam-Djomeh, Z., & Askari, G. (2020). Encapsulation and delivery of bioactive compounds using spray and freeze-drying techniques: A review. Drying Technology, 38(1-2), 235-258.

Rosa, E., Tsukada, M., & Freitas, L. (2006). Secagem por atomização na indústria alimentícia: fundamentos e aplicações. Jornada Científica da Fazu/Faculdades Associadas de Uberaba, 5.

Santamaria-Echart, A., Fernandes, I. P., Silva, S. C., Rezende, S. C., Colucci, G., Dias, M. M., & Barreiro, M. F. (2021). New trends in natural emulsifiers and emulsion technology for the food industry. In Natural food additives. IntechOpen. https://doi.org/10.5772/intechopen.99892

Santos, D., Maurício, A. C., Sencadas, V., Santos, J. D., Fernandes, M. H., & Gomes, P. S. (2018). Spray drying: an overview. Biomaterials-physics and chemistry-new edition, 9-35.

Selvamuthukumaran, M., Tranchant, C., & Shi, J. (2019). Spraying DryingConcept, Application and Its Recent Advances in Food Processing.

Shrestha, A. K., Ua-Arak, T., Adhikari, B. P., Howes, T., & Bhandari, B. R. (2007). Glass transition behavior of spray dried orange juice powder measured by differential scanning calorimetry (DSC) and thermal mechanical compression test (TMCT). International Journal of Food Properties, 10(3), 661-673. https://doi.org/10.1080/10942910601109218

Silalai, N., & Roos, Y. H. (2011). Mechanical α‐relaxations and stickiness of milk solids/maltodextrin systems around glass transition. Journal of the Science of Food and Agriculture, 91(14), 2529-2536. https://doi.org/10.1002/jsfa.4379

Silva, T. M. d., Rodrigues, L. Z., Nunes, G. L., Codevilla, C. F., Silva, C. B. d., & Menezes, C. R. d. (2015). Encapsulação de compostos bioativos por coacervação complexa. Ciência e Natura, 37(5), 56-64. https://doi.org/10.5902/2179460X19715

Tolve, R., Galgano, F., Caruso, M. C., Tchuenbou-Magaia, F. L., Condelli, N., Favati, F., & Zhang, Z. (2016). Encapsulation of health-promoting ingredients: applications in foodstuffs. International journal of food sciences and nutrition, 67(8), 888-918. https://doi.org/10.1080/09637486.2016.1205552

Tontul, I., & Topuz, A. (2017). Spray-drying of fruit and vegetable juices: Effect of drying conditions on the product yield and physical properties. Trends in Food Science & Technology, 63, 91-102. https://doi.org/10.1016/j.tifs.2017.03.009

Verma, A., & Singh, S. V. (2015). Spray drying of fruit and vegetable juices—a review. Critical reviews in food science and nutrition, 55(5), 701-719. https://doi.org/10.1080/10408398.2012.672939

Villegas Santiago, J., Gómez Navarro, F., Domínguez Niño, A., García Alvarado, M. A., Salgado Cervantes, M. A., & Luna Solano, G. (2020). Effect of spray-drying conditions on moisture content and particle size of coffee extract in a prototype dryer. https://doi.org/10.24275/rmiq/Proc767

Wawrzyniak, P., Jaskulski, M., Piatkowski, M., Sobulska, M., Zbicinski, I., & Egan, S. (2020). Experimental detergent drying analysis in a counter-current spray dryer with swirling air flow. Drying Technology. https://doi.org/10.1080/07373937.2019.1626878

Woo, M. W., Lee, M. G., Shakiba, S., & Mansouri, S. (2017). Controlling in situ crystallization of pharmaceutical particles within the spray dryer. Expert opinion on drug delivery, 14(11), 1315-1324. https://doi.org/10.1080/17425247.2017.1269077

Zbicinski, I., Ciesielski, K., & Ge, B. (2022). Mechanism of particle agglomeration for single and multi-nozzle atomization in spray drying: A review. Processes, 10(4), 727. https://doi.org/10.3390/pr10040727

Zotarelli, M. F. (2014). Produção e caracterização de manga desidratada em pó por diferentes processos de secagem Universidade Federal de Santa Catarina, SC.

Downloads

Publicado

30-12-2025

Edição

Seção

Artigos de Revisão

Como Citar

KOHN LANCIOTE CONCILIO, Igor; LUÍS ZOCATELLI, Mário; CAMARGO BARROS DE SILVEIRA MELLO, Beatriz. Tecnologia de spray dryer e microencapsulação – uma breve revisão. Revista Brasileira de Ciência, Tecnologia e Inovação, [S. l.], v. 10, n. 00, p. e025010, 2025. DOI: 10.18554/rbcti.v10i00.6826. Disponível em: https://seer.uftm.edu.br/revistaeletronica/index.php/rbcti/article/view/6826. Acesso em: 8 jan. 2026.