Spray dryer technology and microencapsulation: a brief review

Authors

DOI:

https://doi.org/10.18554/rbcti.v10i00.6826

Keywords:

Glass transition , Carriers, Process parameters

Abstract

Microencapsulation consists of coating substances with an encapsulating agent, resulting in small particles, with the spray dryer being one of the technologies employed. The objective of this study was to review the spray dryer atomization drying process, highlighting the main operating parameters and their correlations with product characteristics. The bibliographic survey was conducted on Google Scholar, using keywords such as spray dryer, microencapsulation, encapsulating agents, glass transition, among others. Works that addressed the process parameters and their effects on the product were selected. It was observed that variables such as temperature, pressure, flow rate, and feed fluid characteristics (viscosity, solids content, and glass transition temperature) directly influence the quality and stability of the powder. Problems such as stickiness, which is adhesion in the chamber, and caking, a phenomenon that can occur during storage due to factors such as humidity, temperature, pressure, and electrostatic forces of the particles, can lead to liquefaction of the product. It was concluded that knowledge of the material to be atomized is essential for defining the parameters, aiming at microencapsulation efficiency.

References

Adhikari, B., Howes, T., Bhandari, B., & Truong, V. (2001). Stickiness in foods: a review of mechanisms and test methods. International Journal of Food Properties, 4(1), 1-33.

Aguilera, J., del Valle, J., & Karel, M. (1995). Caking phenomena in amorphous food powders. Trends in Food Science & Technology, 6(5), 149-155.

Ali, M., Mahmud, T., Heggs, P. J., Ghadiri, M., Bayly, A., Ahmadian, H., & Martin de Juan, L. (2017). CFD modeling of a pilot-scale countercurrent spray drying tower for the manufacture of detergent powder. Drying Technology, 35(3), 281-299. https://doi.org/10.1080/07373937.2016.1163576

Alpizar-Reyes, E., Román-Guerrero, A., Gallardo-Rivera, R., Varela-Guerrero, V., Cruz-Olivares, J., & Perez-Alonso, C. (2018). Rheological properties of tamarind (Tamarindus indica L.) seed mucilage obtained by spray-drying as a novel source of hydrocolloid. International Journal of Biological Macromolecules, 107, 817-824. https://doi.org/10.1016/j.ijbiomac.2017.09.048

Anandharamakrishnan, C., & Ishwarya, S. P. (2015). Spray drying techniques for food ingredient encapsulation. John Wiley & Sons.

Barbosa-Cánovas, G. V., Ortega-Rivas, E., Juliano, P., & Yan, H. (2005). Food powders: physical properties, processing, and functionality. Springer.

Bazaria, B., & Kumar, P. (2018). Optimization of spray drying parameters for beetroot juice powder using response surface methodology (RSM). Journal of the Saudi society of agricultural sciences, 17(4), 408-415. https://doi.org/10.1016/j.jssas.2016.09.007

Both, E., Boom, R., & Schutyser, M. (2020). Particle morphology and powder properties during spray drying of maltodextrin and whey protein mixtures. Powder Technology, 363, 519-524.

Coimbra, P. P. S. (2020). Extração hidroalcoólica, extração assistida por ultrassom e encapsulamento de bioativos de resíduos vegetais Universidade Federal do Estado do Rio de Janeiro]. RJ.

Costa, S. S., Machado, B. A. S., Martin, A. R., Bagnara, F., Ragadalli, S. A., & Alves, A. R. C. (2015). Drying by spray drying in the food industry: Micro-encapsulation, process parameters and main carriers used. African Journal of Food Science, 9(9), 462-470. https://doi.org/10.5897/AJFS2015.1279

Fitzpatrick, J., Descamps, N., O'meara, K., Jones, C., Walsh, D., & Spitere, M. (2010). Comparing the caking behaviours of skim milk powder, amorphous maltodextrin and crystalline common salt. Powder Technology, 204(1), 131-137. https://doi.org/10.1016/j.powtec.2010.07.029

Griesang, J. I., Rosso, A. C., Kuzniewski, F. C., Bertoldo, V. C., dos Santos Oliveira, M., & Severo, J. (2019). Microencapsulação de compostos bioativos em alimentos. Boletim Técnico-Científico, 5(2). https://doi.org/10.26669/2359-2664.2019.227

Islam Shishir, M. R., Taip, F. S., Aziz, N. A., Talib, R. A., & Hossain Sarker, M. S. (2016). Optimization of spray drying parameters for pink guava powder using RSM. Food science and biotechnology, 25(2), 461-468. https://doi.org/10.1007/s10068-016-0064-0

Jedlińska, A., Samborska, K., Wieczorek, A., Wiktor, A., Ostrowska-Ligęza, E., Jamróz, W., Skwarczyńska-Maj, K., Kiełczewski, D., Błażowski, Ł., & Tułodziecki, M. (2019). The application of dehumidified air in rapeseed and honeydew honey spray drying-Process performance and powders properties considerations. Journal of Food Engineering, 245, 80-87. https://doi.org/10.1016/j.jfoodeng.2018.10.017

Juliano, P., & Barbosa-Cánovas, G. V. (2010). Food powders flowability characterization: theory, methods, and applications. Annual review of food science and technology, 1(1), 211-239. https://doi.org/10.1146/annurev.food.102308.124155

Keshani, S., Daud, W. R. W., Nourouzi, M., Namvar, F., & Ghasemi, M. (2015). Spray drying: An overview on wall deposition, process and modeling. Journal of Food Engineering, 146, 152-162. https://doi.org/10.1016/j.jfoodeng.2014.09.004

Lechanteur, A., & Evrard, B. (2020). Influence of composition and spray-drying process parameters on carrier-free DPI properties and behaviors in the lung: A review. Pharmaceutics, 12(1), 55. https://doi.org/10.3390/pharmaceutics12010055

Lintingre, E., Lequeux, F., Talini, L., & Tsapis, N. (2016). Control of particle morphology in the spray drying of colloidal suspensions. Soft Matter, 12(36), 7435-7444. https://doi.org/10.1039/C6SM01314G

Lisboa, H. M., Duarte, M. E., & Cavalcanti-Mata, M. E. (2018). Modeling of food drying processes in industrial spray dryers. Food and Bioproducts Processing, 107, 49-60. https://doi.org/10.1016/j.fbp.2017.09.006

Mohammed, N. K., Tan, C. P., Manap, Y. A., Muhialdin, B. J., & Hussin, A. S. M. (2020). Spray drying for the encapsulation of oils—A review. Molecules, 25(17), 3873. https://doi.org/10.3390/molecules25173873

Moser, P., Telis, V. R. N., de Andrade Neves, N., García-Romero, E., Gómez-Alonso, S., & Hermosín-Gutiérrez, I. (2017). Storage stability of phenolic compounds in powdered BRS Violeta grape juice microencapsulated with protein and maltodextrin blends. Food chemistry, 214, 308-318. https://doi.org/10.1016/j.foodchem.2016.07.081

Mudalip, S. A., Khatiman, M., Hashim, N., Man, R. C., & Arshad, Z. (2021). A short review on encapsulation of bioactive compounds using different drying techniques. Materials Today: Proceedings, 42, 288-296.

Mujumdar, A. S. (2014). Handbook of Industrial Drying.

Muzaffar, K., Nayik, G. A., & Kumar, P. (2015). Stickiness problem associated with spray drying of sugar and acid rich foods: a mini review. Journal of Nutrition & Food Sciences(S12), 1. https://doi.org/10.4172/2155-9600.1000S12003

Palzer, S. (2005). The effect of glass transition on the desired and undesired agglomeration of amorphous food powders. Chemical Engineering Science, 60(14), 3959-3968. https://doi.org/10.1016/j.ces.2005.02.015

Pignatello, R., & Musumeci, T. (2018). Biomaterials: Physics and Chemistry-New Edition. BoD–Books on Demand.

Piñón-Balderrama, C. I., Leyva-Porras, C., Terán-Figueroa, Y., Espinosa-Solís, V., Álvarez-Salas, C., & Saavedra-Leos, M. Z. (2020). Encapsulation of active ingredients in food industry by spray-drying and nano spray-drying technologies. Processes, 8(8), 889. https://doi.org/10.3390/pr8080889

Poozesh, S., & Bilgili, E. (2019). Scale-up of pharmaceutical spray drying using scale-up rules: A review. International Journal of Pharmaceutics, 562, 271-292. https://doi.org/10.1016/j.ijpharm.2019.03.047

Rezvankhah, A., Emam-Djomeh, Z., & Askari, G. (2020). Encapsulation and delivery of bioactive compounds using spray and freeze-drying techniques: A review. Drying Technology, 38(1-2), 235-258.

Rosa, E., Tsukada, M., & Freitas, L. (2006). Secagem por atomização na indústria alimentícia: fundamentos e aplicações. Jornada Científica da Fazu/Faculdades Associadas de Uberaba, 5.

Santamaria-Echart, A., Fernandes, I. P., Silva, S. C., Rezende, S. C., Colucci, G., Dias, M. M., & Barreiro, M. F. (2021). New trends in natural emulsifiers and emulsion technology for the food industry. In Natural food additives. IntechOpen. https://doi.org/10.5772/intechopen.99892

Santos, D., Maurício, A. C., Sencadas, V., Santos, J. D., Fernandes, M. H., & Gomes, P. S. (2018). Spray drying: an overview. Biomaterials-physics and chemistry-new edition, 9-35.

Selvamuthukumaran, M., Tranchant, C., & Shi, J. (2019). Spraying DryingConcept, Application and Its Recent Advances in Food Processing.

Shrestha, A. K., Ua-Arak, T., Adhikari, B. P., Howes, T., & Bhandari, B. R. (2007). Glass transition behavior of spray dried orange juice powder measured by differential scanning calorimetry (DSC) and thermal mechanical compression test (TMCT). International Journal of Food Properties, 10(3), 661-673. https://doi.org/10.1080/10942910601109218

Silalai, N., & Roos, Y. H. (2011). Mechanical α‐relaxations and stickiness of milk solids/maltodextrin systems around glass transition. Journal of the Science of Food and Agriculture, 91(14), 2529-2536. https://doi.org/10.1002/jsfa.4379

Silva, T. M. d., Rodrigues, L. Z., Nunes, G. L., Codevilla, C. F., Silva, C. B. d., & Menezes, C. R. d. (2015). Encapsulação de compostos bioativos por coacervação complexa. Ciência e Natura, 37(5), 56-64. https://doi.org/10.5902/2179460X19715

Tolve, R., Galgano, F., Caruso, M. C., Tchuenbou-Magaia, F. L., Condelli, N., Favati, F., & Zhang, Z. (2016). Encapsulation of health-promoting ingredients: applications in foodstuffs. International journal of food sciences and nutrition, 67(8), 888-918. https://doi.org/10.1080/09637486.2016.1205552

Tontul, I., & Topuz, A. (2017). Spray-drying of fruit and vegetable juices: Effect of drying conditions on the product yield and physical properties. Trends in Food Science & Technology, 63, 91-102. https://doi.org/10.1016/j.tifs.2017.03.009

Verma, A., & Singh, S. V. (2015). Spray drying of fruit and vegetable juices—a review. Critical reviews in food science and nutrition, 55(5), 701-719. https://doi.org/10.1080/10408398.2012.672939

Villegas Santiago, J., Gómez Navarro, F., Domínguez Niño, A., García Alvarado, M. A., Salgado Cervantes, M. A., & Luna Solano, G. (2020). Effect of spray-drying conditions on moisture content and particle size of coffee extract in a prototype dryer. https://doi.org/10.24275/rmiq/Proc767

Wawrzyniak, P., Jaskulski, M., Piatkowski, M., Sobulska, M., Zbicinski, I., & Egan, S. (2020). Experimental detergent drying analysis in a counter-current spray dryer with swirling air flow. Drying Technology. https://doi.org/10.1080/07373937.2019.1626878

Woo, M. W., Lee, M. G., Shakiba, S., & Mansouri, S. (2017). Controlling in situ crystallization of pharmaceutical particles within the spray dryer. Expert opinion on drug delivery, 14(11), 1315-1324. https://doi.org/10.1080/17425247.2017.1269077

Zbicinski, I., Ciesielski, K., & Ge, B. (2022). Mechanism of particle agglomeration for single and multi-nozzle atomization in spray drying: A review. Processes, 10(4), 727. https://doi.org/10.3390/pr10040727

Zotarelli, M. F. (2014). Produção e caracterização de manga desidratada em pó por diferentes processos de secagem Universidade Federal de Santa Catarina, SC.

Published

2025-12-30

Issue

Section

Artigos de Revisão

How to Cite

KOHN LANCIOTE CONCILIO, Igor; LUÍS ZOCATELLI, Mário; CAMARGO BARROS DE SILVEIRA MELLO, Beatriz. Spray dryer technology and microencapsulation: a brief review. BRAZILIAN JOURNAL OF SCIENCE, TECHNOLOGY AND INNOVATION, [S. l.], v. 10, n. 00, p. e025010, 2025. DOI: 10.18554/rbcti.v10i00.6826. Disponível em: https://seer.uftm.edu.br/revistaeletronica/index.php/rbcti/article/view/6826. Acesso em: 9 jan. 2026.