DENDRITIC CELLS AS AN IMMUNOTHERAPY TOOL

Autores

  • Helen Fernanda Marcelino Pacheco
  • Maria Laura Faria de Andrade
  • Bruna Santana Silva Pinheiro
  • Julia Gonçalves Rodrigues
  • Beatriz Gabiatti
  • Jhessyka Lane Ferreira Fernandes
  • Juliana Costa-Madeira
  • Fernanda Carolina Ribeiro Dias
  • Angélica de Oliveira Gomes
  • Márcia Antoniazi Michelin
  • Marcos de Lucca Moreira Gomes

DOI:

https://doi.org/10.18554/acbiobras.v7i1.7583

Palavras-chave:

oncologia, câncer, linfócitos T

Resumo

As células dendríticas (DCs) são células apresentadoras de antígeno que orquestram a resposta imune inata e adaptativa. Essas células em seu estado maduro possuem a característica de expressar moléculas de histocompatibilidade principal (MHC) que apresentam antígenos de forma específica aos receptores de linfócitos T (TCR). A interação entre DCs e linfócitos T garante a sinapse imunológica, que resulta em expansão clonal de linfócitos T, produção de citocinas e quimiocinas, diagrama que configura a efetividade de respostas imunológicas frente aos distúrbios de homeostase reconhecidos. Recentemente, foi descoberto o papel das DCs frente às patologias associadas ao sistema imunológico, uma vez que está associada a indução ou supressão de respostas autorreativas das células T. A capacidade de imunoterapias com DCs para intervenções terapêuticas em cânceres, HIV, doenças autoimunes e adaptações fisiológicas melhoradas em transplantes contribui para uma nova ótica sobre as díspares funcionalidades deste tipo celular. O estudo sobre as aplicações das DCs no manejo de quadros clínicos é totalmente relevante não só para a aplicação em monoterapias, mas também para associação com outras alternativas terapêuticas com perspectivas de encontrar tratamentos e curas promissoras. Nesse sentido, é importante compreender a aplicabilidade das DCs nas intervenções terapêuticas em diferentes cenários, a fim de aprimorar tratamentos já existentes e, ainda, descobrir novas abordagens relacionadas a essas células, conjunto que garante resultados positivos na saúde pública.

Referências

Aly, HAA, 2012. Cancer therapy and vaccination. J. Immunol Methods. 382(1-2). 1-23. http://dx.doi.org/10.1016/j.jim.2012.05.014.

Bol, K; Mensink, HW; Aarntzen EHJG; Schereibelt, G; Keunen, JEE; Coulie, PG; Klein, A; Punt, CJA; Paridaens, D; Figdor, CG and Vries, IJM, 2014. Long Overall Survival After Dendritic Cell Vaccination in Metastatic Uveal Melanoma Patients. Am J Ophthalmol. 158(5). 939-947.5 http://dx.doi.org/10.1016/j.ajo.2014.07.014.

Carenza, C; Calcaterra, F; Oriolo F; Di Vito, C; Ubezio, M; Porta, MGD; Mavilio, D and Della Bella, S, 2019. Costimulatory Molecules and Immune Checkpoints Are Differentially Expressed on Different Subsets of Dendritic Cells. Front Immunol. 10(1). 1-15 http://dx.doi.org/10.3389/fimmu.2019.01325.

Almudevar, A, 2017. A model for the regulation of follicular dendritic cells predicts invariant reciprocal?time decay of post?vaccine antibody response. Immunol Cell Biol. 95(9). 832-842 http://dx.doi.org/10.1038/icb.2017.55.

Lu, J; Sun, K; Yang, H; Fan, D; Huang, H; Hong, Y; Wu, S; Zhou, H; Fang, F; Li, Y; Meng, L; Huang, J and Bai, Z, 2021. Sepsis Inflammation Impairs the Generation of Functional Dendritic Cells by Targeting Their Progenitors. Front Immunol. 12(732612). 1-16. https://doi.org/10.3389/fimmu.2021.732612.

Palucka, K e Banchereau, J, 2012. Cancer immunotherapy via dendritic cells. Nature Rev Cancer. 12(4). 265-277 https://doi.org/10.1038/nrc3258.

Cyster, JG; Allen, CDC. 2019. B cell responses: cell interaction dynamics and decisions. Cell. 177(3). 524–540. https://doi.org/10.1016/j.cell.2019.03.016.

Nistor, GI; Dillman, RO; Robles, RM; Langford, JL; Poole, AL; Sofro, MAU; Nency, YM; Jonny, J; Yana, ML; Karyana, M; Lestari, ES; Triwardhani, R; Mujahidah, M; Sari, RK; Soetojo, NA; Wibisono, D; Tjen, D; Ikrar, T; Sarkissian, G; Winarta, H; Putranto, TA and Keirstead, HS, 2022. A personal COVID-19 dendritic cell vaccine made at point-of-care: Feasibility, safety, and antigen-specific cellular immune responses. Hum Vaccin Immunother. 30;18(6). https://doi.org/10.1080/21645515.2022.2100189.

Jackson, LA; Anderson, EJ; Rouphael, NG; Roberts, PC; Makhene, M; Coler, RN; McCullough, MP; Chappell, JD; Denison, MR; Stevens, LJ; Pruijssers, AJ; McDermott, A; Flach, B; Doria-Rose, NA; Corbett, KS; Morabito, KM; O’Dell, S; Schimidt, SD; Swanson, PA; Padilla, M; Mascola, JR; Neuzil, KM; Bennett, H; Sun, W; Peters, E; Makowski, M; Albert, J; Cross, K; Buchanan, W; Pikaart-Tautges, R; Ledgerwood, JE; Graham, BS and Beigel, JH, 2020. An mRNA Vaccine against SARS-CoV-2 - Preliminary Report. N Engl J Med. 383(20). 1920–1931. https://doi.org/10.1056/nejmoa2022483.

Wang, D; Huang, XF; Hong, B; Song, XT; Hu, L; Jiang, M; Zhang, B; Ning, H; Li, Y; Xu, C; Lou, X; Li, B; Yu, Z; Hu, J; Chen, J; Yang, F; Gao, H; Ding, G; Liao, L; Rollins, L; Jones, L; Chen SY and Chen, H, 2018. Efficacy of intracellular immune checkpoint-silenced DC vaccine. JCI Insight. 8 3(3). e98368 https://doi.org/10.1172/jci.insight.98368.

Diamond, MS; Kinder, M; Matsushita, H; Mashayekhi, M; Dunn, GP; Archambault, JM; Lee, H; Arthur, CD; White, JM; Kalinke, U; Murphy, KM and Schreiber, RD, 2011. Type I interferon is selectively required by dendritic cells for immune rejection of tumors. J Exp Med. 208(10). 1989-2003 http://dx.doi.org/10.1084/jem.20101158.

Fuertes, MB; Kacha, AK; Kline, J; Woo, SR; Kranz, DM; Murphy, KM and Gajewski, TF, 2011. Host type I IFN signals are required for antitumor CD8+ T cell responses through CD8?+ dendritic cells. J Exp Med. 208(10). 2005-2016 http://dx.doi.org/10.1084/jem.20101159.

Pardoll, DM, 1998. Cancer vaccines. Nature Med. 4(5). 525-531. https://doi.org/10.1038/nm0598supp-525.

Carreno, BM; Magrini, V; Becker-Hapak, M; Kaabinejadian, S; Hundal, J; Petti, AA; Ly, A; Lie, WR; Hildebrand, WH; Mardis, ER and Linette, GP, 2015. A dendritic cell vaccine increases the breadth and diversity of melanoma neoantigen-specific T cells. Science. 348(6236). 803-808. http://dx.doi.org/10.1126/science.aaa3828.

Ding, Z; Li, Q; Zhang, R; Xie, L; Shu, Y; Gao, S; Wang, P; Su, X; Qin, Y; Wang, Y; Fang, J; Zhu, Z; Xia, X; Wei, G; Wang, H; Qian, H; Guo, X; Gao, Z; Wang, Y; Wei, Y; Xu, Q; Xu, H and Yang, L, 2021. Personalized neoantigen pulsed dendritic cell vaccine for advanced lung cancer. Signal Transduct Target Ther. 6(1). 26. https://doi.org/10.1038/s41392-020-00448-5.

Lau, SP; Klaase, L; Vink, M; Dumas, J; Bezemer, K; Van Krimpen, A; Van der Breggen, R; Wismans, LV; Doukas, M; Koning, W; Stubbs, AP; Mustafa, DAM; Vroman, H; Stadhouders, R; Nunes, JB; Stingl, C; Miranda, NFCC; Luider, TM; Van der Burgn, SH; Aerts, JG and Van Ejick, CHJ, 2022. Autologous dendritic cells pulsed with allogeneic tumour cell lysate induce tumour-reactive T-cell responses in patients with pancreatic cancer: A phase I study. Eur J Cancer, 169. 20-31. https://doi.org/10.1016/j.ejca.2022.03.015.

Castiello, L; Sabatino, M; Ren, J; Terabe, M; Khuu, H; Wood, LV; Berzofsky, JA and Stroncek, DF, 2017. Expression of CD14, IL10, and Tolerogenic Signature in Dendritic Cells Inversely Correlate with Clinical and Immunologic Response to TARP Vaccination in Prostate Cancer Patients. Clin Cancer Res. 13. 3352-3364. http://dx.doi.org/10.1158/1078-0432.ccr-16-2199.

Rob, L; Cibula, D; Knapp, P; Mallmann, P; Klat, J; Minar, L; Bartos, P; Chovanec, J; Valha, P; Pluta, M; Novotny, K; Spacek, J; Melichar, B; Kieszko, D; Fucikova, J; Hrnciarova, T; Korolkiewicz, RP; Hraska, M; Bartunkova, J and Spisek, R, 2022. Safety and efficacy of dendritic cell-based immunotherapy DCVAC/OvCa added to first-line chemotherapy (carboplatin plus paclitaxel) for epithelial ovarian cancer: a phase 2, open-label, multicenter, randomized trial. J Immunother Cancer. 10(1). 003190. http://dx.doi.org/10.1136/jitc-2021-003190.

Michelin, MA; Murta, EFC and Silva, SFM, 2021. Dynamic analysis of the immunological response of Balb/c mice with experimental breast cancer submitted to immunotherapy treatment of dendritic cell/ Análise dinâmica da resposta imunológica de camundongos Balb/c com câncer de mama experimental submetido a imunoterapia de células dendríticas. Braz J Dev. 7. 66648-66666. http://dx.doi.org/10.34117/bjdv7n7-101.

Vieira, JF; Peixoto, AP; Murta, EFC and Michelin, MA, 2021. Prophylactic Dendritic Cell Vaccination in Experimental Breast Cancer Controls Immunity and Hepatic Metastases. Anticancer Res. 41(7). 3419-3427. http://dx.doi.org/10.21873/anticanres.15129.

Liau, LM; Ashkan, K; Brem, S; Campian, JL; Trusheim, JE; Iwamoto, FM; Tran, DD; Ansstas, G; Cobbs, CS; Heth, JA; Salacz, ME; D’Andre, S; Aiken, RD; Moshel, YA; Nam, JY; Pillainayagam, CP; Wagner, SA; Walter, KA; Chaudhary, R; Goldlust, SA; Lee, IY; Bota, DA; Elinzano, H; Grewal, J; Lillehei, K; Mikkelsen, T; Walbert, T; Abram, S; Brenner, AJ; Ewend, MG; Khagi, S; Lovick, DS; Portnow, J; Kim, L; Loudon, WG; Martinez, NL; Thompson, RC; Avigan, DE; Fink, KL; Geoffroy, FJ; Giglio, P; Gligich, O; Krex, D; Lindhorst, SM; Lutzky, J; Meisel, HJ; Nadji-Ohl, M; Sanchin, L; Sloan, A; Taylor, LP; Wu, JK, Dunbar, EM; Etame, AB; Kesari, S; Mathieu, D; Piccioni, DE; Baskin, DS; Lacroix, M; May, SA; New, PZ; Pluard, TJ; Toms, SA; Tse, V; Peak, S; Villano, JL; Battiste, JD; Mulholland, PJ; Prins, RM; Boynton, AL an Bosch, ML, 2023. Association of Autologous Tumor Lysate-Loaded Dendritic Cell Vaccination With Extension of Survival Among Patients With Newly Diagnosed and Recurrent Glioblastoma. Jama Oncol 9(1). 112. http://dx.doi.org/10.1001/jamaoncol.2022.5370.

Gay, CL; DeBenedetter, MA; Tcherepanova, IY; Gamble, A; Lewis, WE; Cope, AN; Kuruc, JD; McGee, KS; Kearney, MF; Coffin, JM; Archin, NM; Hicks, CB; Eron, JJ; Nicolette, CA and Margolis, DM, 2018. Immunogenicity of AGS-004 Dendritic Cell Therapy in Patients Treated During Acute HIV Infection. Aids Res Hum Retroviruses. 34(1). 111-122 http://dx.doi.org/10.1089/aid.2017.0071.

Kristoff, J; Palma, ML; Garcia-Bates, TM; Shen, C; Sluis-Cremer, N; Gupta, P; Rinaldo, CR and Mailliard, RB, 2019. Type 1-programmed dendritic cells drive antigen-specific latency reversal and immune elimination of persistent HIV-1. Ebiomedicine. 43. 295-306. http://dx.doi.org/10.1016/j.ebiom.2019.03.077.

Surenaud, M; Montes, M; Arlehamn, CSL; Sette, A; Banchereau, J; Palucka, K; Lelièvre, JD and Lacabaratz, C, 2019. Anti-HIV potency of T-cell responses elicited by dendritic cell therapeutic vaccination. Plos Pathogens. 15(9). 1008011 http://dx.doi.org/10.1371/journal.ppat.1008011.

Jimenez-Leon, MR; Gasca-Capote, C; Tarancon-Diez, L; Dominguez-Molina, B; Lopez-Verdugo, M; Ritraj, R; Gallego, I; Alvarez-Rios, AI; Vitalle, J; Bachiller, S; Camancho-Sojo, MI; Perez-Gomes, A; Espinosa, N; Roca-Oporto, C; Benhnia, MREI; Gutierrez-Valencia, A; Lopez-Cortes, LF and Ruiz-Mateos, E, 2023. Toll-like receptor agonists enhance HIV-specific T cell response mediated by plasmacytoid dendritic cells in diverse HIV-1 disease progression phenotypes. Ebiomedicine. 91. 104549. http://dx.doi.org/10.1016/j.ebiom.2023.104549.

Laeremans, T; Den Roover, S; Lungu, C; H’haese, S; Gruters, RA; Allard, SD and Aerts, JL, 2023. Autologous dendritic cell vaccination against HIV-1 induces changes in natural killer cell phenotype and functionality. Npj Vaccines. 8(1). 29. http://dx.doi.org/10.1038/s41541-023-00631-z.

Stolp, J., Zaitsu, M., & Wood, K. J, 2019. Immune Tolerance and Rejection in Organ Transplantation. Method Mol Biol 1899. 159–180. https://doi.org/10.1007/978-1-4939-8938-6_12.

Nielsen, MB; Ravlo, K; Eijken,M; Krogstrup, NV; Svendsen, MB; Abdel-Halim, C; Petersen, MK; Birn, H; Oltean, M; Jespersen, B and Moller, BK, 2021. Dynamics of circulating dendritic cells and cytokines after kidney transplantation—No effect of remote ischaemic conditioning, Clin Exp Immunol. 206(2). 226–236. https://doi.org/10.1111/cei.13658.

Henden, AS; Varelias, A; Leach, J; Sturheon, E; Avery, J; Kelly, J; Olver, S; Samson, L; Hartel, G; Durrant, S; Butler, J; Morton, AJ; Misra, A; Tey, SK; Subramoniapillai, E; Curley, C; Kennedy, G and Hill, GR, 2019. Pegylated interferon-2? invokes graft-versus-leukemia effects in patients relapsing after allogeneic stem cell transplantation. Blood Adv. 3(20). 3013–3019. https://doi.org/10.1182/bloodadvances.2019000453.

Magenau, JM; Peltier, D; Riwes, M; Pawarode, A; Parkin, B; Braun, T; Anand, S; Ghosh, M; Maciejewski, J; Yanik, G; Choi, SW; Talpaz, M and Reddy, P, 2021. Type 1 interferon to prevent leukemia relapse after allogeneic transplantation. Blood Adv. 5(23). 5047–5056. https://doi.org/10.1182/bloodadvances.2021004908.

Wimmers, F; Donato, M; Kuo, A; Ashuach, T; Gupta, S; Li, C; Dvorak, M; Foecke, MH; Chang, SE; Hagan, T; De Jong, SE; Maecker, HT; Van der Most, R; Cheung, P; Cortese, M; Bosinger, SE; Davis, M; Rouphael, N; Subramaniam, S; Yosef, N; Utz, PJ; Khatri, P and Pulendran, B, 2021. The single-cell epigenomic and transcriptional landscape of immunity to influenza vaccination. Cell, 184(15). 3915–3935.e21. https://doi.org/10.1016/j.cell.2021.05.039.

Downloads

Publicado

2024-06-07

Como Citar

Pacheco, H. F. M. ., Andrade, M. L. F. de ., Pinheiro, B. S. S. ., Rodrigues, J. G. ., Gabiatti, B. ., Fernandes, J. L. F. ., Costa-Madeira, J. ., Dias, F. C. R., Gomes, A. de O., Michelin, M. A. ., & Gomes, M. de L. M. (2024). DENDRITIC CELLS AS AN IMMUNOTHERAPY TOOL. Acta Biologica Brasiliensia, 7(1), 6–19. https://doi.org/10.18554/acbiobras.v7i1.7583

Edição

Seção

Revisão da Literatura

Artigos mais lidos pelo mesmo(s) autor(es)