AS CÉLULAS DENDRÍTICAS COMO FERRAMENTA DE IMUNOTERAPIA

Authors

  • Helen Fernanda Marcelino Pacheco
  • Maria Laura Faria de Andrade
  • Bruna Santana Silva Pinheiro
  • Julia Gonçalves Rodrigues
  • Beatriz Gabiatti
  • Jhessyka Lane Ferreira Fernandes
  • Juliana Costa-Madeira
  • Fernanda Carolina Ribeiro Dias
  • Angélica de Oliveira Gomes
  • Márcia Antoniazi Michelin
  • Marcos de Lucca Moreira Gomes

DOI:

https://doi.org/10.18554/acbiobras.v7i1.7583

Keywords:

oncology, cancer, T lymphocytes

Abstract

Dendritic cells (DCs) are antigen-presenting cells that orchestrate the innate and adaptive immune response. These cells in their mature state have the characteristic of binding to T lymphocyte receptors through the specificities present in DC histocompatibility molecules that are attracted to T receptors (TCR). The interaction between DCs and T lymphocytes guarantees the immunological synapse, which results in clonal expansion of T lymphocytes, production of cytokines and chemokines, a diagram that configures the effectiveness of immunological responses in the face of recognized homeostasis disorders. Recently, the role of DCs in pathologies associated with the immune system was discovered, as it is associated with the induction or suppression of autoreactive T cell responses. The capacity of immunotherapies with DCs for therapeutic interventions in cancers, HIV, autoimmune diseases and adaptations improved physiological characteristics in transplants contributes to a new perspective on the disparate functionalities of these cells. The study of the applications of DCs in the management of clinical conditions is totally relevant not only for their application as monotherapies, but also for their association with other therapeutic alternatives with the prospect of finding promising treatments and cures. In this sense, it is important to understand the applicability of DCs in therapeutic interventions in different scenarios, in order to improve existing treatments and also discover new approaches related to these cells, a set that guarantees positive results in public health.

References

Aly, HAA, 2012. Cancer therapy and vaccination. J. Immunol Methods. 382(1-2). 1-23. http://dx.doi.org/10.1016/j.jim.2012.05.014.

Bol, K; Mensink, HW; Aarntzen EHJG; Schereibelt, G; Keunen, JEE; Coulie, PG; Klein, A; Punt, CJA; Paridaens, D; Figdor, CG and Vries, IJM, 2014. Long Overall Survival After Dendritic Cell Vaccination in Metastatic Uveal Melanoma Patients. Am J Ophthalmol. 158(5). 939-947.5 http://dx.doi.org/10.1016/j.ajo.2014.07.014.

Carenza, C; Calcaterra, F; Oriolo F; Di Vito, C; Ubezio, M; Porta, MGD; Mavilio, D and Della Bella, S, 2019. Costimulatory Molecules and Immune Checkpoints Are Differentially Expressed on Different Subsets of Dendritic Cells. Front Immunol. 10(1). 1-15 http://dx.doi.org/10.3389/fimmu.2019.01325.

Almudevar, A, 2017. A model for the regulation of follicular dendritic cells predicts invariant reciprocal?time decay of post?vaccine antibody response. Immunol Cell Biol. 95(9). 832-842 http://dx.doi.org/10.1038/icb.2017.55.

Lu, J; Sun, K; Yang, H; Fan, D; Huang, H; Hong, Y; Wu, S; Zhou, H; Fang, F; Li, Y; Meng, L; Huang, J and Bai, Z, 2021. Sepsis Inflammation Impairs the Generation of Functional Dendritic Cells by Targeting Their Progenitors. Front Immunol. 12(732612). 1-16. https://doi.org/10.3389/fimmu.2021.732612.

Palucka, K e Banchereau, J, 2012. Cancer immunotherapy via dendritic cells. Nature Rev Cancer. 12(4). 265-277 https://doi.org/10.1038/nrc3258.

Cyster, JG; Allen, CDC. 2019. B cell responses: cell interaction dynamics and decisions. Cell. 177(3). 524–540. https://doi.org/10.1016/j.cell.2019.03.016.

Nistor, GI; Dillman, RO; Robles, RM; Langford, JL; Poole, AL; Sofro, MAU; Nency, YM; Jonny, J; Yana, ML; Karyana, M; Lestari, ES; Triwardhani, R; Mujahidah, M; Sari, RK; Soetojo, NA; Wibisono, D; Tjen, D; Ikrar, T; Sarkissian, G; Winarta, H; Putranto, TA and Keirstead, HS, 2022. A personal COVID-19 dendritic cell vaccine made at point-of-care: Feasibility, safety, and antigen-specific cellular immune responses. Hum Vaccin Immunother. 30;18(6). https://doi.org/10.1080/21645515.2022.2100189.

Jackson, LA; Anderson, EJ; Rouphael, NG; Roberts, PC; Makhene, M; Coler, RN; McCullough, MP; Chappell, JD; Denison, MR; Stevens, LJ; Pruijssers, AJ; McDermott, A; Flach, B; Doria-Rose, NA; Corbett, KS; Morabito, KM; O’Dell, S; Schimidt, SD; Swanson, PA; Padilla, M; Mascola, JR; Neuzil, KM; Bennett, H; Sun, W; Peters, E; Makowski, M; Albert, J; Cross, K; Buchanan, W; Pikaart-Tautges, R; Ledgerwood, JE; Graham, BS and Beigel, JH, 2020. An mRNA Vaccine against SARS-CoV-2 - Preliminary Report. N Engl J Med. 383(20). 1920–1931. https://doi.org/10.1056/nejmoa2022483.

Wang, D; Huang, XF; Hong, B; Song, XT; Hu, L; Jiang, M; Zhang, B; Ning, H; Li, Y; Xu, C; Lou, X; Li, B; Yu, Z; Hu, J; Chen, J; Yang, F; Gao, H; Ding, G; Liao, L; Rollins, L; Jones, L; Chen SY and Chen, H, 2018. Efficacy of intracellular immune checkpoint-silenced DC vaccine. JCI Insight. 8 3(3). e98368 https://doi.org/10.1172/jci.insight.98368.

Diamond, MS; Kinder, M; Matsushita, H; Mashayekhi, M; Dunn, GP; Archambault, JM; Lee, H; Arthur, CD; White, JM; Kalinke, U; Murphy, KM and Schreiber, RD, 2011. Type I interferon is selectively required by dendritic cells for immune rejection of tumors. J Exp Med. 208(10). 1989-2003 http://dx.doi.org/10.1084/jem.20101158.

Fuertes, MB; Kacha, AK; Kline, J; Woo, SR; Kranz, DM; Murphy, KM and Gajewski, TF, 2011. Host type I IFN signals are required for antitumor CD8+ T cell responses through CD8?+ dendritic cells. J Exp Med. 208(10). 2005-2016 http://dx.doi.org/10.1084/jem.20101159.

Pardoll, DM, 1998. Cancer vaccines. Nature Med. 4(5). 525-531. https://doi.org/10.1038/nm0598supp-525.

Carreno, BM; Magrini, V; Becker-Hapak, M; Kaabinejadian, S; Hundal, J; Petti, AA; Ly, A; Lie, WR; Hildebrand, WH; Mardis, ER and Linette, GP, 2015. A dendritic cell vaccine increases the breadth and diversity of melanoma neoantigen-specific T cells. Science. 348(6236). 803-808. http://dx.doi.org/10.1126/science.aaa3828.

Ding, Z; Li, Q; Zhang, R; Xie, L; Shu, Y; Gao, S; Wang, P; Su, X; Qin, Y; Wang, Y; Fang, J; Zhu, Z; Xia, X; Wei, G; Wang, H; Qian, H; Guo, X; Gao, Z; Wang, Y; Wei, Y; Xu, Q; Xu, H and Yang, L, 2021. Personalized neoantigen pulsed dendritic cell vaccine for advanced lung cancer. Signal Transduct Target Ther. 6(1). 26. https://doi.org/10.1038/s41392-020-00448-5.

Lau, SP; Klaase, L; Vink, M; Dumas, J; Bezemer, K; Van Krimpen, A; Van der Breggen, R; Wismans, LV; Doukas, M; Koning, W; Stubbs, AP; Mustafa, DAM; Vroman, H; Stadhouders, R; Nunes, JB; Stingl, C; Miranda, NFCC; Luider, TM; Van der Burgn, SH; Aerts, JG and Van Ejick, CHJ, 2022. Autologous dendritic cells pulsed with allogeneic tumour cell lysate induce tumour-reactive T-cell responses in patients with pancreatic cancer: A phase I study. Eur J Cancer, 169. 20-31. https://doi.org/10.1016/j.ejca.2022.03.015.

Castiello, L; Sabatino, M; Ren, J; Terabe, M; Khuu, H; Wood, LV; Berzofsky, JA and Stroncek, DF, 2017. Expression of CD14, IL10, and Tolerogenic Signature in Dendritic Cells Inversely Correlate with Clinical and Immunologic Response to TARP Vaccination in Prostate Cancer Patients. Clin Cancer Res. 13. 3352-3364. http://dx.doi.org/10.1158/1078-0432.ccr-16-2199.

Rob, L; Cibula, D; Knapp, P; Mallmann, P; Klat, J; Minar, L; Bartos, P; Chovanec, J; Valha, P; Pluta, M; Novotny, K; Spacek, J; Melichar, B; Kieszko, D; Fucikova, J; Hrnciarova, T; Korolkiewicz, RP; Hraska, M; Bartunkova, J and Spisek, R, 2022. Safety and efficacy of dendritic cell-based immunotherapy DCVAC/OvCa added to first-line chemotherapy (carboplatin plus paclitaxel) for epithelial ovarian cancer: a phase 2, open-label, multicenter, randomized trial. J Immunother Cancer. 10(1). 003190. http://dx.doi.org/10.1136/jitc-2021-003190.

Michelin, MA; Murta, EFC and Silva, SFM, 2021. Dynamic analysis of the immunological response of Balb/c mice with experimental breast cancer submitted to immunotherapy treatment of dendritic cell/ Análise dinâmica da resposta imunológica de camundongos Balb/c com câncer de mama experimental submetido a imunoterapia de células dendríticas. Braz J Dev. 7. 66648-66666. http://dx.doi.org/10.34117/bjdv7n7-101.

Vieira, JF; Peixoto, AP; Murta, EFC and Michelin, MA, 2021. Prophylactic Dendritic Cell Vaccination in Experimental Breast Cancer Controls Immunity and Hepatic Metastases. Anticancer Res. 41(7). 3419-3427. http://dx.doi.org/10.21873/anticanres.15129.

Liau, LM; Ashkan, K; Brem, S; Campian, JL; Trusheim, JE; Iwamoto, FM; Tran, DD; Ansstas, G; Cobbs, CS; Heth, JA; Salacz, ME; D’Andre, S; Aiken, RD; Moshel, YA; Nam, JY; Pillainayagam, CP; Wagner, SA; Walter, KA; Chaudhary, R; Goldlust, SA; Lee, IY; Bota, DA; Elinzano, H; Grewal, J; Lillehei, K; Mikkelsen, T; Walbert, T; Abram, S; Brenner, AJ; Ewend, MG; Khagi, S; Lovick, DS; Portnow, J; Kim, L; Loudon, WG; Martinez, NL; Thompson, RC; Avigan, DE; Fink, KL; Geoffroy, FJ; Giglio, P; Gligich, O; Krex, D; Lindhorst, SM; Lutzky, J; Meisel, HJ; Nadji-Ohl, M; Sanchin, L; Sloan, A; Taylor, LP; Wu, JK, Dunbar, EM; Etame, AB; Kesari, S; Mathieu, D; Piccioni, DE; Baskin, DS; Lacroix, M; May, SA; New, PZ; Pluard, TJ; Toms, SA; Tse, V; Peak, S; Villano, JL; Battiste, JD; Mulholland, PJ; Prins, RM; Boynton, AL an Bosch, ML, 2023. Association of Autologous Tumor Lysate-Loaded Dendritic Cell Vaccination With Extension of Survival Among Patients With Newly Diagnosed and Recurrent Glioblastoma. Jama Oncol 9(1). 112. http://dx.doi.org/10.1001/jamaoncol.2022.5370.

Gay, CL; DeBenedetter, MA; Tcherepanova, IY; Gamble, A; Lewis, WE; Cope, AN; Kuruc, JD; McGee, KS; Kearney, MF; Coffin, JM; Archin, NM; Hicks, CB; Eron, JJ; Nicolette, CA and Margolis, DM, 2018. Immunogenicity of AGS-004 Dendritic Cell Therapy in Patients Treated During Acute HIV Infection. Aids Res Hum Retroviruses. 34(1). 111-122 http://dx.doi.org/10.1089/aid.2017.0071.

Kristoff, J; Palma, ML; Garcia-Bates, TM; Shen, C; Sluis-Cremer, N; Gupta, P; Rinaldo, CR and Mailliard, RB, 2019. Type 1-programmed dendritic cells drive antigen-specific latency reversal and immune elimination of persistent HIV-1. Ebiomedicine. 43. 295-306. http://dx.doi.org/10.1016/j.ebiom.2019.03.077.

Surenaud, M; Montes, M; Arlehamn, CSL; Sette, A; Banchereau, J; Palucka, K; Lelièvre, JD and Lacabaratz, C, 2019. Anti-HIV potency of T-cell responses elicited by dendritic cell therapeutic vaccination. Plos Pathogens. 15(9). 1008011 http://dx.doi.org/10.1371/journal.ppat.1008011.

Jimenez-Leon, MR; Gasca-Capote, C; Tarancon-Diez, L; Dominguez-Molina, B; Lopez-Verdugo, M; Ritraj, R; Gallego, I; Alvarez-Rios, AI; Vitalle, J; Bachiller, S; Camancho-Sojo, MI; Perez-Gomes, A; Espinosa, N; Roca-Oporto, C; Benhnia, MREI; Gutierrez-Valencia, A; Lopez-Cortes, LF and Ruiz-Mateos, E, 2023. Toll-like receptor agonists enhance HIV-specific T cell response mediated by plasmacytoid dendritic cells in diverse HIV-1 disease progression phenotypes. Ebiomedicine. 91. 104549. http://dx.doi.org/10.1016/j.ebiom.2023.104549.

Laeremans, T; Den Roover, S; Lungu, C; H’haese, S; Gruters, RA; Allard, SD and Aerts, JL, 2023. Autologous dendritic cell vaccination against HIV-1 induces changes in natural killer cell phenotype and functionality. Npj Vaccines. 8(1). 29. http://dx.doi.org/10.1038/s41541-023-00631-z.

Stolp, J., Zaitsu, M., & Wood, K. J, 2019. Immune Tolerance and Rejection in Organ Transplantation. Method Mol Biol 1899. 159–180. https://doi.org/10.1007/978-1-4939-8938-6_12.

Nielsen, MB; Ravlo, K; Eijken,M; Krogstrup, NV; Svendsen, MB; Abdel-Halim, C; Petersen, MK; Birn, H; Oltean, M; Jespersen, B and Moller, BK, 2021. Dynamics of circulating dendritic cells and cytokines after kidney transplantation—No effect of remote ischaemic conditioning, Clin Exp Immunol. 206(2). 226–236. https://doi.org/10.1111/cei.13658.

Henden, AS; Varelias, A; Leach, J; Sturheon, E; Avery, J; Kelly, J; Olver, S; Samson, L; Hartel, G; Durrant, S; Butler, J; Morton, AJ; Misra, A; Tey, SK; Subramoniapillai, E; Curley, C; Kennedy, G and Hill, GR, 2019. Pegylated interferon-2? invokes graft-versus-leukemia effects in patients relapsing after allogeneic stem cell transplantation. Blood Adv. 3(20). 3013–3019. https://doi.org/10.1182/bloodadvances.2019000453.

Magenau, JM; Peltier, D; Riwes, M; Pawarode, A; Parkin, B; Braun, T; Anand, S; Ghosh, M; Maciejewski, J; Yanik, G; Choi, SW; Talpaz, M and Reddy, P, 2021. Type 1 interferon to prevent leukemia relapse after allogeneic transplantation. Blood Adv. 5(23). 5047–5056. https://doi.org/10.1182/bloodadvances.2021004908.

Wimmers, F; Donato, M; Kuo, A; Ashuach, T; Gupta, S; Li, C; Dvorak, M; Foecke, MH; Chang, SE; Hagan, T; De Jong, SE; Maecker, HT; Van der Most, R; Cheung, P; Cortese, M; Bosinger, SE; Davis, M; Rouphael, N; Subramaniam, S; Yosef, N; Utz, PJ; Khatri, P and Pulendran, B, 2021. The single-cell epigenomic and transcriptional landscape of immunity to influenza vaccination. Cell, 184(15). 3915–3935.e21. https://doi.org/10.1016/j.cell.2021.05.039.

Downloads

Published

2024-06-07

How to Cite

Pacheco, H. F. M. ., Andrade, M. L. F. de ., Pinheiro, B. S. S. ., Rodrigues, J. G. ., Gabiatti, B. ., Fernandes, J. L. F. ., Costa-Madeira, J. ., Dias, F. C. R., Gomes, A. de O., Michelin, M. A. ., & Gomes, M. de L. M. (2024). AS CÉLULAS DENDRÍTICAS COMO FERRAMENTA DE IMUNOTERAPIA. Acta Biologica Brasiliensia, 7(1), 6–19. https://doi.org/10.18554/acbiobras.v7i1.7583

Issue

Section

Revisão da Literatura

Most read articles by the same author(s)