AS FUNÇÕES DE FORMINAS, KLF6, TUSC3, CYP11A1 E FOXN1 NO DESENVOLVIMENTO EMBRIONÁRIO: CONEXÕES IMPROVÁVEIS, MAS POSSÍVEIS. UMA REVISÃO DA LITERATURA

Autores

  • Beatriz Cubero Freitas Universidade Federal do Triângulo Mineiro
  • Guilherme Vannucchi Portari Universidade Federal do Triângulo Mineiro
  • Claudio Roberto Simon Universidade Federal do Triângulo Mineiro https://orcid.org/0009-0009-6567-531X

DOI:

https://doi.org/10.18554/acbiobras.v7i2.8098

Palavras-chave:

embriogênese animal, circuitos genéticos, função gênica

Resumo

Durante o desenvolvimento animal, diversos genes agem em “circuitos” que evoluíram e tornaram-se indispensáveis para os diferentes processos do desenvolvimento embrionário. As distintas funções gênicas na embriogênese têm sido identificadas por diversas técnicas experimentais in vivo, ex vivo e in sílico. Muitas vezes são laboriosas, de alto custo e às vezes limitadas na identificação de interações de proteínas com estruturas moleculares distintas. Identificar novos “circuitos” formados por genes e proteínas de características diversas é ferramenta valiosa para melhor compreensão do desenvolvimento embrionário normal e disfuncional. Neste trabalho, através de uma revisão narrativa da literatura, visamos a identificação de possíveis relações entre: os genes codificadores de membros da família de proteínas forminas e também dos genes: TUSC3, KLF6, CYP11A1 e FOXN1 com a embriogênese animal. A extensa, variada e evolutivamente conservada família de forminas codifica proteínas reguladoras do citoesqueleto, envolvidas em vários processos do desenvolvimento. TUSC3 uma proteína do complexo Oligossacariltransferase, atua na N-glicosilação, na supressão tumoral e também na maturação sexual. O gene KLF6 (Kruppel Like Factor 6) codifica uma proteína nuclear com domínios dedos-de-zinco, que regulam múltiplos genes. A proteína codificada por CYP11A1 faz parte da membrana mitocondrial interna e atua na esteroidogênese e espermatogênese, enquanto o gene FOXN1, é expresso principalmente em células epiteliais do timo e da pele com distintas funções. A análise dos artigos selecionados evidencia a participação desses genes em uma grande variedade de processos do desenvolvimento animal e em diferentes espécies animais. Forminas e KLF6 atuam em processos similares de desenvolvimento e podem eventualmente interagir. CYP11A1 também atua similarmente à KLF6 e forminas em menor grau. TUSC3 e FOXN1, a despeito de seus papéis fundamentais, atuam no desenvolvimento animal em contextos mais específicos. A investigação experimental dessas possíveis interações deve contribuir para o melhor entendimento de suas funções no desenvolvimento, nos processos comuns do desenvolvimento animal aqui apontadas.

PALAVRAS-CHAVE: embriogênese animal, circuitos genéticos, função gênica

Referências

Loffet EA, Durel JF, Nerurkar NL. Evo-Devo Mechanobiology: The Missing Link. Integr Comp Biol. 2023 16: icad033. 10.1093/icb/icad033.

Goswami A, Noirault E, Coombs EJ, Clavel J, Fabre AC, Halliday TJD, Churchill M, Curtis A, Watanabe A, Simmons NB, Beatty BL, Geisler JH, FD L Felice RN 2023 Developmental origin underlies evolutionary rate variation across the placental skullPhil. Trans. R. Soc. B3782022008320220083 10.1098/rstb.2022.0083.

Pruyne D. Revisiting the phylogeny of the animal formins: two new subtypes, relationships with multiple wing hairs proteins, and a lost human formin. PLoS One. 2016; 11(10): e0164067. 10.1371/journal.pone.0164067.

Labat-de-Hoz L, Alonso MA. Formins in Human Disease. Cells. 2021 27; 10(10): 2554. 10.3390/cells10102554.

Innocenti M. Investigating Mammalian Formins with SMIFH2 Fifteen Years in: Novel Targets and Unexpected Biology. Int J Mol Sci. 2023 21; 24(10): 9058. 10.3390/ijms24109058.

Mohorko E, Owen RL, Maloj?i? G, Brozzo MS, Aebi M, Glockshuber R. Structural Basis of Substrate Specificity of Human Oligosaccharyl Transferase Subunit N33/Tusc3 and Its Role in Regulating Protein N-Glycosylation. Structure, 2014, 590–601 p.

Va?hara P, Horak P, Pils D, Anees M, Petz M, Gregor W, Zeillinger R, Krainer M. Loss of the Oligosaccharyl Transferase Subunit TUSC3 Promotes Proliferation and Migration of Ovarian Cancer Cells. International Journal of Oncology, 2013, 1383–89. 10.3892/ijo.2013.1824.

Zhang MJ, Xing LX, Cui M, Yang X, Shi JG, Li J, Zhang KJ, Zheng ZJ, Zhang FC, Li JL, Gao XC. Association of TUSC3 gene polymorphisms with non-syndromic mental retardation based on nuclear families in the Qinba mountain area of China. Genetics and Molecular Research, 2015, 5022–30 p.

Yu X, Zhai C, Fan Y, Zhang J, Liang N, Liu F, Cao L, Wang J, Du J. TUSC3: A Novel Tumour Suppressor Gene and Its Functional Implications. Journal of Cellular and Molecular Medicine, 2017, 1711–18. 10.1111/jcmm.13128.

Bieker J. Krüppel-like Factors: Three Fingers in Many Pies. Journal of Biological Chemistry, 2001, 34355–58. 10.1074/jbc.R100043200.

Stocco D, Clark BJ. Regulation of the Acute Production of Steroids in Steroidogenic Cells. Endocrine Reviews, 1996, 221–44. 10.1210/edrv-17-3-221.

al Kandari H, Katsumata N, Alexander S, Rasoul MA. Homozygous Mutation of P450 Side-Chain Cleavage Enzyme Gene (CYP11A1) in 46, XY Patient with Adrenal Insufficiency, Complete Sex Reversal, and Agenesis of Corpus Callosum. The Journal of Clinical Endocrinology & Metabolism, 2006, 2821–26. 10.1210/jc.2005-2230.

Kim CJ, Lin L, Huang, N, Quigley CA, AvRuskin TW, Achermann JC, Miller WL. Severe Combined Adrenal and Gonadal Deficiency Caused by Novel Mutations in the Cholesterol Side Chain Cleavage Enzyme, P450scc. The Journal of Clinical Endocrinology & Metabolism, 2008, 696–702. 10.1210/jc.2007-2330.

Nowotarski S, McKeon N, Moser RJ, Peifer M. The actin regulators Enabled and Diaphanous direct distinct protrusive behaviors in different tissues during Drosophila development. Mol Biol Cell. 2014 ;25(20): 3147-65. 10.1091/mbc.E14-05-0951.

Mecklenburg L, Tychsen B, Paus R. Learning from nudity: lessons from the nude phenotype. Exp Dermatol. 2005; 14: 797–810.

Zhou F, Leder P, Zuniga A, Dettenhofer M. Formin1 disruption confers oligodactylism and alters Bmp signaling. Hum Mol Genet. 2009 ;18(13): 2472-82. 10.1093/hmg/ddp185.

Nakamura H, Chiambaretta F, Sugar J, Sapin V, Yue BY. Developmentally regulated expression of KLF6 in the mouse cornea and lens. Invest Ophthalmol Vis Sci. 2004 ;45(12): 4327-32. 10.1167/iovs.04-0353.

Rode I, Martins VC, Küblbeck G, Maltry N, Tessmer C, Rodewald HR. Foxn1 Protein Expression in the Developing, Aging, and Regenerating Thymus. J Immunol. 2015 ;195(12): 5678-87. 10.4049/jimmunol.1502010.

Liang D, Fan Z, Zou Y, Tan X, Wu Z, Jiao S, Li J, Zhang P, You F. Characteristics of Cyp11a during Gonad Differentiation of the Olive Flounder Paralichthys olivaceus. Int J Mol Sci. 2018 ;19(9): 2641. 10.3390/ijms19092641.

O'neill K, Bredenkamp N, Tischner C, Vaidya HJ, Stenhouse FH, Peddie CD, Nowell CS, Gaskell T, Blackburn CC. Foxn1 Is Dynamically Regulated in Thymic Epithelial Cells during Embryogenesis and at the Onset of Thymic Involution. PLoS One. 2016 ;11(3): e0151666. 10.1371/journal.pone.0151666.

Ma D, Wang L, Wang S, Gao Y, Wei Y, Liu F. Foxn1 maintains thymic epithelial cells to support T-cell development via mcm2 in zebrafish. Proc Natl Acad Sci U S A. 2012 ;109(51): 21040-5. 10.1073/pnas.1217021110.

Nowell CS, Bredenkamp N, Tetélin S, Jin X, Tischner C, Vaidya H, Sheridan JM, Stenhouse FH, Heussen R, Smith AJ, Blackburn CC. Foxn1 regulates lineage progression in cortical and medullary thymic epithelial cells but is dispensable for medullary sublineage divergence. PLoS Genet. 2011 ;7(11): e1002348. 10.1371/journal.pgen.1002348.

Larsen BM, Cowan JE, Wang Y, Tanaka Y, Zhao Y, Voisin B, Constantinides MG, Nagao K, Belkaid Y, Awasthi P, Takahama Y, Bhandoola A. Identification of an Intronic Regulatory Element Necessary for Tissue-Specific Expression of Foxn1 in Thymic Epithelial Cells. J Immunol. 2019 ;203(3): 686-695. 10.4049/jimmunol.1801540.

Gordon J, Xiao S, Hughes B 3rd, Su DM, Navarre SP, Condie BG, Manley NR. Specific expression of lacZ and cre recombinase in fetal thymic epithelial cells by multiplex gene targeting at the Foxn1 locus. BMC Dev Biol. 2007 ;7: 69. 10.1186/1471-213X-7-69.

Corbeaux T, Hess I, Swann JB, Kanzler B, Haas-Assenbaum A, Boehm T. Thymopoiesis in mice depends on a Foxn1-positive thymic epithelial cell lineage. Proc Natl Acad Sci U S A. 2010 ;107(38): 16613-8. 10.1073/pnas.1004623107.

Su DM, Navarre S, Oh WJ, Condie BG, Manley NR. A domain of Foxn1 required for crosstalk-dependent thymic epithelial cell differentiation. Nat Immunol. 2003 ;4(11): 1128-35. 10.1038/ni983.

Dooley J, Erickson M, Farr AG. Lessons from thymic epithelial heterogeneity: FoxN1 and tissue-restricted gene expression by extrathymic, endodermally derived epithelium. J Immunol. 2009 ;183(8): 5042-9. 10.4049/jimmunol.0901371.

Janes SM, Ofstad TA, Campbell DH, Watt FM, Prowse DM. Transient activation of FOXN1 in keratinocytes induces a transcriptional programme that promotes terminal differentiation: contrasting roles of FOXN1 and Akt. J Cell Sci. 2004 ;117(Pt 18): 4157-68. 10.1242/jcs.01302.

Swann JB, Krauth B, Happe C, Boehm T. Cooperative interaction of BMP signalling and Foxn1 gene dosage determines the size of the functionally active thymic epithelial compartment. Sci Rep. 2017 ;7(1): 8492. 10.1038/s41598- 017-09213-1.

Ye YX, Zhang CX. Pleiotropic Functions of FoxN1: Regulating Different Target Genes during Embryogenesis and Nymph Molting in the Brown Planthopper. Int J Mol Sci. 2020 ;21(12): 4222. 10.3390/ijms21124222.

Muñoz JJ, Tobajas E, Juara S, Montero S, Zapata AG. FoxN1 mediates thymic cortex-medulla differentiation through modifying a developmental pattern based on epithelial tubulogenesis. Histochem Cell Biol. 2019 ;152(6): 397-413. 10.1007/s00418-019-01818-z.

Guo J, Rahman M, Cheng L, Zhang S, Tvinnereim A, Su DM. Morphogenesis and maintenance of the 3D thymic medulla and prevention of nude skin phenotype require FoxN1 in pre- and post-natal K14 epithelium. J Mol Med (Berl). 2011 ;89(3): 263-77. 10.1007/s00109-010-0700-8.

Cai J, Ma L. Msx2 and Foxn1 regulate nail homeostasis. Genesis. 2011; 49(6): 449-59. 10.1002/dvg.20744.

Zhang Y, Wang L, Li Z, Chen D, Han W, Wu Z, Shang F, Hai E, Wei Y, Su R, Liu Z, Wang R, Wang Z, Zhao Y, Wang Z, Zhang Y, Li J. Transcriptome profiling reveals transcriptional and alternative splicing regulation in the early embryonic development of hair follicles in the cashmere goat. Sci Rep. 2019; 9(1): 17735. 10.1038/s41598-019-54315-7.

Han W, Li X, Wang L, Wang H, Yang K, Wang Z, Wang R, Su R, Liu Z, Zhao Y, Zhang Y, Li J. Expression of fox-related genes in the skin follicles of Inner Mongolia cashmere goat. Asian-Australas J Anim Sci. 2018; 31(3): 316-326. 10.5713/ajas.17.0115.

Potter CS, Pruett ND, Kern MJ, Baybo MA, Godwin AR, Potter KA, Peterson RL, Sundberg JP, Awgulewitsch A. The nude mutant gene Foxn1 is a HOXC13 regulatory target during hair follicle and nail differentiation. J Invest Dermatol. 2011; 131(4): 828-37. 10.1038/jid.2010.391.

Darnell DK, Zhang LS, Hannenhalli S, Yaklichkin SY. Developmental expression of chicken FOXN1 and putative target genes during feather development. Int J Dev Biol. 2014; 58(1): 57-64. 10.1387/ijdb.130023sy.

Dooley J, Erickson M, Roelink H, Farr AG. Nude thymic rudiment lacking functional foxn1 resembles respiratory epithelium. Dev Dyn. 2005; 233(4): 1605- 12. 10.1002/dvdy.20495.

Gordon J, Bennett AR, Blackburn CC, Manley NR. Gcm2 and Foxn1 mark early parathyroid- and thymus-specific domains in the developing third pharyngeal pouch. Mech Dev. 2001; 103(1-2): 141-3. 10.1016/s0925-4773(01)00333-1.

Hatzirodos N, Hummitzsch K, Irving-Rodgers HF, Breen J, Perry VEA, Anderson RA, Rodgers RJ. Transcript abundance of stromal and thecal cell related genes during bovine ovarian development. PLoS One. 2019; 14(3): e0213575. 10.1371/journal.pone.0213575.

Bryson JL, Griffith AV, Hughes B 3rd, Saito F, Takahama Y, Richie ER, Manley NR. Cell-autonomous defects in thymic epithelial cells disrupt endothelialperivascular cell interactions in the mouse thymus. PLoS One. 2013; 8(6): e65196. 10.1371/journal.pone.0065196.

Lee YH, Williams A, Hong CS, You Y, Senoo M, Saint-Jeannet JP. Early development of the thymus in Xenopus laevis. Dev Dyn. 2013; 242(2): 164-78. 10.1002/dvdy.23905.

Cai J, Ma L. Msx2 and Foxn1 regulate nail homeostasis. Genesis. 2011; 49(6): 449-59. 10.1002/dvg.20744.

Gao Y, Cao Q, Lu L, Zhang X, Zhang Z, Dong X, Jia W, Cao Y. Kruppel-like factor family genes are expressed during Xenopus embryogenesis and involved in germ layer formation and body axis patterning. Dev Dyn. 2015; 244(10): 1328-46. 10.1002/dvdy.24310.

Blanchon L, Bocco JL, Gallot D, Gachon AM, Lémery D, Déchelotte P, Dastugue B, Sapin V. Co-localization of KLF6 and KLF4 with pregnancy-specific glycoproteins during human placenta development. Mech Dev. 2001; 105(1-2): 185-9. 10.1016/s0925-4773(01)00391-4.

Matsumoto N, Kubo A, Liu H, Akita K, Laub F, Ramirez F, Keller G, Friedman SL. Developmental regulation of yolk sac hematopoiesis by Kruppel-like factor 6. Blood. 2006; 107(4): 1357-65. 10.1182/blood-2005-05-1916.

Racca AC, Camolotto SA, Ridano ME, Bocco JL, Genti-Raimondi S, PanzettaDutari GM. Krüppel-like factor 6 expression changes during trophoblast syncytialization and transactivates ßhCG and PSG placental genes. PLoS One. 2011; 6(7): e22438. 10.1371/journal.pone.0022438.

Slavin D, Sapin V, López-Diaz F, Jacquemin P, Koritschoner N, Dastugue B, Davidson I, Chatton B, Bocco JL. The Krüppel-like core promoter binding protein gene is primarily expressed in placenta during mouse development. Biol Reprod. 1999; 61(6): 1586-91. 10.1095/biolreprod61.6.1586.

Fischer EA, Verpont MC, Garrett-Sinha LA, Ronco PM, Rossert JA. Klf6 is a zinc finger protein expressed in a cell-specific manner during kidney development. J Am Soc Nephrol. 2001; 12(4): 726-35.

Weber U, Rodriguez E, Martignetti J, Mlodzik M. Luna, a Drosophila KLF6/KLF7, is maternally required for synchronized nuclear and centrosome cycles in the preblastoderm embryo. PLoS One. 2014; 9(6): e96933. 10.1371/journal.pone.0096933.

De Graeve F, Smaldone S, Laub F, Mlodzik M, Bhat M, Ramirez F. Identification of the Drosophila progenitor of mammalian Krüppel-like factors 6 and 7 and a determinant of fly development. Gene. 2003; 314: 55-62. 10.1016/s0378- 1119(03)00720-0.

Laub F, Aldabe R, Ramirez F, Friedman S. Embryonic expression of Krüppellike factor 6 in neural and non-neural tissues. Mech Dev. 2001; 106(1-2): 167-70. 10.1016/s0925-4773(01)00419-1.

Zhao X, Monson C, Gao C, Gouon-Evans V, Matsumoto N, Sadler KC, Friedman SL. Klf6/copeb is required for hepatic outgrowth in zebrafish and for hepatocyte specification in mouse ES cells. Dev Biol. 2010; 344(1): 79-93. 10.1016/j.ydbio.2010.04.018.

Kazeto Y, Ijiri S, Adachi S, Yamauchi K. Cloning and characterization of a cDNA encoding cholesterol side-chain cleavage cytochrome P450 (CYP11A1): tissuedistribution and changes in the transcript abundance in ovarian tissue of Japanese eel, Anguilla japonica, during artificially induced sexual development. J Steroid Biochem Mol Biol. 2006; 99(2-3): 121-8. 10.1016/j.jsbmb.2005.12.004.

Nakamoto M, Fukasawa M, Orii S, Shimamori K, Maeda T, Suzuki A, Matsuda M, Kobayashi T, Nagahama Y, Shibata N. Cloning and expression of medaka cholesterol side chain cleavage cytochrome P450 during gonadal development. Dev Growth Differ. 2010; 52(4): 385-95. 10.1111/j.1440-169X.2010.01178.x.

Quirke LD, Juengel JL, Tisdall DJ, Lun S, Heath DA, McNatty KP. Ontogeny of steroidogenesis in the fetal sheep gonad. Biol Reprod. 2001;65(1): 216-28. 10.1095/biolreprod65.1.216.

Vizziano-Cantonnet D, Anglade I, Pellegrini E, Gueguen MM, Fostier A, Guiguen Y, Kah O. Sexual dimorphism in the brain aromatase expression and activity, and in the central expression of other steroidogenic enzymes during the period of sex differentiation in monosex rainbow trout populations. Gen Comp Endocrinol. 2015; 170(2): 346-55. 10.1016/j.ygcen.2010.10.009.

, Freking F, Nazairians T, Schlinger BA. The expression of the sex steroidsynthesizing enzymes CYP11A1, 3beta-HSD, CYP17, and CYP19 in gonads and adrenals of adult and developing zebra finches. Gen Comp Endocrinol. 2000; 119(2): 140-51. 10.1006/gcen.2000.7503.

Kanda I, Akazome Y, Ogasawara O, Mori T. Expression of cytochrome P450 cholesterol side chain cleavage and 3beta-hydroxysteroid dehydrogenase during embryogenesis in chicken adrenal glands and gonads. Gen Comp Endocrinol. 2000; 118(1): 96-104. 10.1006/gcen.1999.7448.

Aste N, Watanabe Y, Shimada K, Saito N. Sex- and age-related variation in neurosteroidogenic enzyme mRNA levels during quail embryonic development. Brain Res. 2008; 1201: 15-22. 10.1016/j.brainres.2008.01.075.

Provost PR, Tremblay Y. Genes involved in the adrenal pathway of glucocorticoid synthesis are transiently expressed in the developing lung. Endocrinology. 2005; 146(5): 2239-45. 10.1210/en.2005-0077.

Negrón-Pérez Vm, Zhang Y, Hansen PJ. Single-cell gene expression of the bovine blastocyst. Reproduction. 2017; 154(5): 627-644. 10.1530/REP-17-0345.

Endo D, Kanaho Y, Park MK. Expression of sex steroid hormone-related genes in the embryo of the leopard gecko. Gen Comp Endocrinol. 2008; 155(1): 70-8. 10.1016/j.ygcen.2007.04.010.

Lardennois A, Pásti G, Ferraro T, Llense F, Mahou P, Pontabry J, Rodriguez D, Kim S, Ono S, Beaurepaire E, Gally C, Labouesse M. An actin-based viscoplastic lock ensures progressive body-axis elongation. Nature. 2019; 573(7773): 266-270. 10.1038/s41586-019-1509-4.

Delgado-Álvarez Dl, Bartnicki-García S, Seiler S, Mouriño-Pérez RR. Septum development in Neurospora crassa: the septal actomyosin tangle. PLoS One. 2014; 9(5): e96744. 10.1371/journal.pone.0096744.

Tee Yh, Shemesh T, Thiagarajan V, Hariadi RF, Anderson KL, Page C, Volkmann N, Hanein D, Sivaramakrishnan S, Kozlov MM, Bershadsky AD. Cellular chirality arising from the self-organization of the actin cytoskeleton. Nat Cell Biol. 2015; 17(4): 445-57. 10.1038/ncb3137.

Corkins Me, Krneta-Stankic V, Kloc M, McCrea PD, Gladden AB, Miller RK. Divergent roles of the Wnt/PCP Formin Daam1 in renal ciliogenesis. PLoS One. 2019; 14(8): e0221698. 10.1371/journal.pone.0221698.

Hong Eh, Kim JY, Kim JH, Lim DS, Kim M, Kim JY. BIG2-ARF1-RhoA-mDia1 Signaling Regulates Dendritic Golgi Polarization in Hippocampal Neurons. Mol Neurobiol. 2018; 55(10): 7701-7716. 10.1007/s12035-018-0954-7.

Lu Q, Adler PN. The diaphanous gene of Drosophila interacts antagonistically with multiple wing hairs and plays a key role in wing hair morphogenesis. PLoS One. 2015; 10(3): e0115623. 10.1371/journal.pone.0115623.

Leader B, Leder P. Formin-2, a novel formin homology protein of the cappuccino subfamily, is highly expressed in the developing and adult central nervous system. Mech Dev. 2000; 93(1-2): 221-31. 10.1016/s0925- 4773(00)00276-8.

Lian G, Chenn A, Ekuta V, Kanaujia S, Sheen V. Formin 2 Regulates Lysosomal Degradation of Wnt-Associated ?-Catenin in Neural Progenitors. Cereb Cortex. 2019; 29(5): 1938-1952. 10.1093/cercor/bhy073.

Vorstman JA, van Daalen E, Jalali GR, Schmidt ER, Pasterkamp RJ, de Jonge M, Hennekam EA, Janson E, Staal WG, van der Zwaag B, Burbach JP, Kahn RS, Emanuel BS, van Engeland H, Ophoff RA. A double hit implicates DIAPH3 as an autism risk gene. Mol Psychiatry. 2011 Apr;16(4):442-51. 10.1038/mp.2010.26.

Ercan-Sencicek A, Jambi S, Franjic D, Nishimura S, Li M, El-Fishawy P, Morgan TM, Sanders SJ, Bilguvar K, Suri M, Johnson MH, Gupta AR, Yuksel Z, Mane S, Grigorenko E, Picciotto M, Alberts AS, Gunel M, Šestan N, State MW. Homozygous loss of DIAPH1 is a novel cause of microcephaly in humans. Eur J Hum Genet. 2015; 23(2): 165-72. 10.1038/ejhg.2014.82.

Dollar G, Gombos R, Barnett AA, Sanchez Hernandez D, Maung SM, Mihály J, Jenny A. Unique and Overlapping Functions of Formins Frl and DAAM During Ommatidial Rotation and Neuronal Development in Drosophila. Genetics. 2016; 202(3): 1135-51. 10.1534/genetics.115.181438.

Yanakieva I, Erzberger A, Matej?i? M, Modes CD, Norden C. Cell and tissue morphology determine actin-dependent nuclear migration mechanisms in neuroepithelia. J Cell Biol. 2019; 218(10): 3272-3289. 10.1083/jcb.201901077.

Lian G, Dettenhofer M, Lu J, Downing M, Chenn A, Wong T, Sheen V. Filamin Aand formin 2-dependent endocytosis regulates proliferation via the canonical Wnt pathway. Development. 2016; 143(23): 4509-4520. 10.1242/dev.139295.

Quinlan Me. Direct interaction between two actin nucleators is required in Drosophila oogenesis. Development. 2013; 140(21): 4417-25. 10.1242/dev.097337.

Nakaya Ma, Gudmundsson KO, Komiya Y, Keller JR, Habas R, Yamaguchi TP, Ajima R. Placental defects lead to embryonic lethality in mice lacking the Formin and PCP proteins Daam1 and Daam2. PLoS One. 2020; 15(4): e0232025. 10.1371/journal.pone.0232025.

Fujimoto N, Kan-O M, Ushijima T, Kage Y, Tominaga R, Sumimoto H, Takeya R. Transgenic Expression of the Formin Protein Fhod3 Selectively in the Embryonic Heart: Role of Actin-Binding Activity of Fhod3 and Its Sarcomeric Localization during Myofibrillogenesis. PLoS One. 2016; 11(2): e0148472. 10.1371/journal.pone.0148472.

Vogler G, Liu J, Iafe TW, Migh E, Mihály J, Bodmer R. Cdc42 and formin activity control non-muscle myosin dynamics during Drosophila heart morphogenesis. J Cell Biol. 2014; 206(7): 909-22. 10.1083/jcb.201405075.

Reber I, Keller I, Becker D, Flury C, Welle M, Drögemüller C. Wattles in goats are associated with the FMN1/GREM1 region on chromosome 10. Anim Genet. 2015; 46(3): 316-20. 10.1111/age.12279.

Lian G, Kanaujia S, Wong T, Sheen V. FilaminA and Formin2 regulate skeletal, muscular, and intestinal formation through mesenchymal progenitor proliferation. PLoS One. 2017; 12(12): e0189285. 10.1371/journal.pone.0189285.

Matusek T, Djiane A, Jankovics F, Brunner D, Mlodzik M, Mihály J. The Drosophila formin DAAM regulates the tracheal cuticle pattern through organizing the actin cytoskeleton. Development. 2006; 133(5): 957-66. 10.1242/dev.02266.

Hetheridge C, Scott AN, Swain RK, Copeland JW, Higgs HN, Bicknell R, Mellor H. The formin FMNL3 is a cytoskeletal regulator of angiogenesis. J Cell Sci. 2012; 125(Pt 6): 1420-8. 10.1242/jcs.091066.

Lecorgne H, Tudosie AM, Lavik K, Su R, Becker KN, Moore S, Walia Y, Wisner A, Koehler D, Alberts AS, Williams FE, Eisenmann KM. Differential Toxicity of mDia Formin-Directed Functional Agonists and Antagonists in Developing Zebrafish. Front Pharmacol. 2018; 9: 340. 10.3389/fphar.2018.00340.

Phng Lk, Gebala V, Bentley K, Philippides A, Wacker A, Mathivet T, Sauteur L, Stanchi F, Belting HG, Affolter M, Gerhardt H. Formin-mediated actin polymerization at endothelial junctions is required for vessel lumen formation and stabilization. Dev Cell. 2015; 32(1): 123-32. 10.1016/j.devcel.2014.11.017.

Molnár I, Migh E, Szikora S, Kalmár T, Végh AG, Deák F, Barkó S, Bugyi B, Orfanos Z, Kovács J, Juhász G, Váró G, Nyitrai M, Sparrow J, Mihály J. DAAM is required for thin filament formation and Sarcomerogenesis during muscle development in Drosophila. PLoS Genet. 2014; 10(2): e1004166. 10.1371/journal.pgen.1004166.

Mi-Mi L, Votra S, Kemphues K, Bretscher A, Pruyne D. Z-line formins promote contractile lattice growth and maintenance in striated muscles of C. elegans. J Cell Biol. 2012; 198(1): 87-102. 10.1083/jcb.201202053.

Fenix Am, Neininger AC, Taneja N, Hyde K, Visetsouk MR, Garde RJ, Liu B, Nixon BR, Manalo AE, Becker JR, Crawley SW, Bader DM, Tyska MJ, Liu Q, Gutzman JH, Burnette DT. Muscle-specific stress fibers give rise to sarcomeres in cardiomyocytes. Elife. 2018; 7: e42144. 10.7554/eLife.42144.

Sundaramurthy S, Votra S, Laszlo A, Davies T, Pruyne D. FHOD-1 is the only formin in Caenorhabditis elegans that promotes striated muscle growth and Z-line organization in a cell autonomous manner. Cytoskeleton (Hoboken). 2020; 77(10): 422-441. 10.1002/cm.21639.

Deng S, Silimon RL, Balakrishnan M, Bothe I, Juros D, Soffar DB, Baylies MK. The actin polymerization factor Diaphanous and the actin severing protein Flightless I collaborate to regulate sarcomere size. Dev Biol. 2021; 469: 12-25. 10.1016/j.ydbio.2020.09.014.

Kan-O M, Takeya R, Abe T, Kitajima N, Nishida M, Tominaga R, Kurose H, Sumimoto H. Mammalian formin Fhod3 plays an essential role in cardiogenesis by organizing myofibrillogenesis. Biol Open. 2012; 1(9): 889-96. 10.1242/bio.20121370.

Weise-Cross L, Taylor JM, Mack CP. Inhibition of Diaphanous Formin Signaling In Vivo Impairs Cardiovascular Development and Alters Smooth Muscle Cell Phenotype. Arterioscler Thromb Vasc Biol. 2015; 35(11): 2374-83. 10.1161/ATVBAHA.115.305879.

Litschko C, Brühmann S, Csiszár A, Stephan T, Dimchev V, Damiano-Guercio J, Junemann A, Körber S, Winterhoff M, Nordholz B, Ramalingam N, Peckham M, Rottner K, Merkel R, Faix J. Functional integrity of the contractile actin cortex is safeguarded by multiple Diaphanous-related formins. Proc Natl Acad Sci U S A. 2019; 116(9): 3594-3603. 10.1073/pnas.1821638116.

Sakamoto S, Thumkeo D, Ohta H, Zhang Z, Huang S, Kanchanawong P, Fuu T, Watanabe S, Shimada K, Fujihara Y, Yoshida S, Ikawa M, Watanabe N, Saitou M, Narumiya S. mDia1/3 generate cortical F-actin meshwork in Sertoli cells that is continuous with contractile F-actin bundles and indispensable for spermatogenesis and male fertility. PLoS Biol. 2018; 16(9): e2004874. 10.1371/journal.pbio.2004874.

Li N, Mruk DD, Wong CK, Han D, Lee WM, Cheng CY. Formin 1 Regulates Ectoplasmic Specialization in the Rat Testis Through Its Actin Nucleation and Bundling Activity. Endocrinology. 2015; 156(8): 2969-83. 10.1210/en.2015- 1161.

Thumkeo D, Shinohara R, Watanabe K, Takebayashi H, Toyoda Y, Tohyama K, Ishizaki T, Furuyashiki T, Narumiya S. Deficiency of mDia, an actin nucleator, disrupts integrity of neuroepithelium and causes periventricular dysplasia. PLoS One. 2011; 6(9): e25465. 10.1371/journal.pone.0025465.

Sahasrabudhe A, Ghate K, Mutalik S, Jacob A, Ghose A. Formin 2 regulates the stabilization of filopodial tip adhesions in growth cones and affects neuronal outgrowth and pathfinding in vivo. Development. 2016; 143(3): 449-60. 10.1242/dev.130104.

Li D, Hallett MA, Zhu W, Rubart M, Liu Y, Yang Z, Chen H, Haneline LS, Chan RJ, Schwartz RJ, Field LJ, Atkinson SJ, Shou W. Dishevelled-associated activator of morphogenesis 1 (Daam1) is required for heart morphogenesis. Development. 2011; 138(2): 303-15. 10.1242/dev.055566.

Ajima R, Bisson JA, Helt JC, Nakaya MA, Habas R, Tessarollo L, He X, Morrisey EE, Yamaguchi TP, Cohen ED. DAAM1 and DAAM2 are co-required for myocardial maturation and sarcomere assembly. Dev Biol. 2015; 408(1): 126-39. 10.1016/j.ydbio.2015.10.003.

Sulistomo Hw, Nemoto T, Yanagita T, Takeya R. Formin homology 2 domain-containing 3 (Fhod3) controls neural plate morphogenesis in mouse cranial neurulation by regulating multidirectional apical constriction. J Biol Chem. 2019; 294(8): 2924-2934. 10.1074/jbc.RA118.005471.

Dutta P, Maiti S. Expression of multiple formins in adult tissues and during developmental stages of mouse brain. Gene Expr Patterns. 2015; 19(1-2): 52- 9. 10.1016/j.gep.2015.07.003.

Yoo H, Roth-Johnson EA, Bor B, Quinlan ME. Drosophila Cappuccino alleles provide insight into formin mechanism and role in oogenesis. Mol Biol Cell. 2015; 26(10): 1875-86. 10.1091/mbc.E14-11-1558.

Homem Cc, Peifer M. Diaphanous regulates myosin and adherens junctions to control cell contractility and protrusive behavior during morphogenesis. Development. 2008; 135(6): 1005-18. 10.1242/dev.016337.

Magie CR, Meyer MR, Gorsuch MS, Parkhurst SM. Mutations in the Rho1 small GTPase disrupt morphogenesis and segmentation during early Drosophila development. Development. 1999; 126(23): 5353-64.

Grosshans J, Wenzl C, Herz HM, Bartoszewski S, Schnorrer F, Vogt N, Schwarz H, Müller HA. RhoGEF2 and the formin Dia control the formation of the furrow canal by directed actin assembly during Drosophila cellularisation. Development. 2005; 132(5): 1009-20. 10.1242/dev.01669.

Bor B, Bois JS, Quinlan ME. Regulation of the formin Cappuccino is critical for polarity of Drosophila oocytes. Cytoskeleton (Hoboken). 2015; 72(1): 1-15. 10.1002/cm.21205.

Thestrup J, Tipold M, Kindred A, Stark K, Curry T, Lewellyn L. The Arp2/3 complex and the formin, Diaphanous, are both required to regulate the size of germline ring canals in the developing egg chamber. Dev Biol. 2020; 461(1): 75-85. 10.1016/j.ydbio.2020.01.007.

Homem CC, Peifer M. Exploring the roles of diaphanous and enabled activity in shaping the balance between filopodia and lamellipodia. Mol Biol Cell. 2009; 20(24): 5138-55. 10.1091/mbc.e09-02-0144.

Saleh A, Subramaniam G, Raychaudhuri S, Dhawan J. Cytoplasmic sequestration of the RhoA effector mDiaphanous1 by Prohibitin2 promotes muscle differentiation. Sci Rep. 2019; 9(1): 8302. 10.1038/s41598-019-44749-4.

Matusek T, Gombos R, Szécsényi A, Sánchez-Soriano N, Czibula A, Pataki C, Gedai A, Prokop A, Raskó I, Mihály J. Formin proteins of the DAAM subfamily play a role during axon growth. J Neurosci. 2008; 28(49): 13310-9. 10.1523/JNEUROSCI.2727-08.2008.

Anhezini, L. Saita, AP, Costa, MS, Ramos RGP, Simon CR. Fhos encodes a Drosophila Formin-Like Protein participating in autophagic programmed cell death. Gênesis (Nova York, NY: 2000). 2012, 672–84mp. 10.1002/dvg.22025.

Colombo A, Palma K, Armijo L, Mione M, Signore IA, Morales C, Guerrero N, Meynard MM, Pérez R, Suazo J, Marcelain K, Briones L, Härtel S, Wilson SW, Concha ML. Daam1a mediates asymmetric habenular morphogenesis by regulating dendritic and axonal outgrowth. Development. 2013; 140(19): 3997-4007. 10.1242/dev.091934.

Lai Sl, Chan TH, Lin MJ, Huang WP, Lou SW, Lee SJ. Diaphanous-related formin 2 and profilin I are required for gastrulation cell movements. PLoS One. 2008; 3(10): e3439. 10.1371/journal.pone.0003439.

Santos-Ledo A, Jenny A, Marlow FL. Comparative gene expression analysis of the fmnl family of formins during zebrafish development and implications for tissue specific functions. Gene Expr Patterns. 2013; 13(1-2): 30-7. 10.1016/j.gep.2012.09.002.

Abe M, Kuroda R. The development of CRISPR for a mollusc establishes the formin Lsdia1 as the long-sought gene for snail dextral/sinistral coiling. Development. 2019; 146(9): dev175976. 10.1242/dev.175976.

Noda T, Satoh N, Asami T. Heterochirality results from reduction of maternal diaph expression in a terrestrial pulmonate snail. Zoological Lett. 2019; 5: 2. 10.1186/s40851-018-0120-0.

Shaye Dd, Greenwald I. A network of conserved formins, regulated by the guanine exchange factor EXC-5 and the GTPase CDC-42, modulates tubulogenesis in vivo. Development. 2016; 143(22): 4173-4181. 10.1242/dev.141861.

Vaidya HJ, Briones Leon A, Blackburn CC. FOXN1 in thymus organogenesis and development. Eur J Immunol. 2016; 46(8): 1826-37. 10.1002/eji.201545814.

Moses A, Bhalla P, Thompson A, Lai L, Coskun FS, Seroogy CM, de la Morena MT, Wysocki CA, van Oers NSC. Comprehensive phenotypic analysis of diverse FOXN1 variants. J Allergy Clin Immunol. 2023; 152(5): 1273-1291.e15. 10.1016/j.jaci.2023.06.019.

Downloads

Publicado

2024-11-12

Como Citar

Freitas , B. C. ., Vannucchi Portari, G., & Simon, C. R. (2024). AS FUNÇÕES DE FORMINAS, KLF6, TUSC3, CYP11A1 E FOXN1 NO DESENVOLVIMENTO EMBRIONÁRIO: CONEXÕES IMPROVÁVEIS, MAS POSSÍVEIS. UMA REVISÃO DA LITERATURA. Acta Biologica Brasiliensia, 7(2), 163–196. https://doi.org/10.18554/acbiobras.v7i2.8098

Edição

Seção

Revisão da Literatura

Artigos mais lidos pelo mesmo(s) autor(es)